Alzheimer's disease genes and proteins associated with resistance and aerobic training: An in silico analysis

Background

Exercise appears to be a viable intervention for maintaining cognitive function and regaining functional autonomy, and perhaps even contributing to a slower progression of Alzheimer's Disease (AD).

Objective

To explore different neuroplasticity pathways modulated by aerobic and strength training, determine whether signaling pathways overlapped for each specific training method (aerobic and strength training), and evaluate whether there is a functional relationship between APOE and APP gene expression with aerobic training modulated by BDNF; and strength training modulated by IGF-1.

Methods

An in silico analysis was performed to analyze the connection between exercise types and neuroplasticity as a protective factor in AD. The platform provides a protein-protein interaction network translated into known and predicted interactions. A score > 0.70 was determined as high confidence and the network was considered significant when the Protein-Protein Interaction Enrichment was <0.01.

Results

Multiple functional associations considered significant between the analyzed proteins. The results of our gene network model support that exercise, both aerobic and strength, can modulate genes that affect hippocampal neuroplasticity and neurogenesis, which may delay cognitive decline and Alzheimer's related symptoms.

Conclusion

The investigation about the functional association of aerobic training via BDNF in the modulation of APP, APOE, and MAPT genes in the hippocampus seems to be established, while strength training seems to induce the production of IGF-1 and IGF-1R, modulating AKT1.

留言 (0)

沒有登入
gif