Effect of Combinational therapy with Erythropoietin, Pentoxifylline and Vitamin D on Glasgow Outcome Scale in Patient with Traumatic Brain Injury (TBI)

References:
1. Menon, D., et al., Demographics and clinical assessment working group of the international and interagency initiative toward common data elements for research on traumatic brain injury and psychological health. Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil. 2010; 91(11): p. 1637-40.2
2. Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 2007; 22: 341–53.
3. Faul, M. D., Xu, L., Wald, M. M., & Coronado, V. G. Traumatic brain injury in the
United States: Emergency department visits, hospitalizations, and deaths, 2002–2006.
Atlanta, GA: Centers for Disease Control and Prevention, National Center for Injury
Prevention and Control. 2010.
4. Matthews DS, Matthews JN, Aynsley-Green A, Bullock RE, Eyre JA: Changes in cerebral oxygen consumption are independent of changes in body oxygen consumption after severe head injury in childhood. J NeurolNeurosurg Psychiatry 1995; 59:359–367.
5. Gentleman D: Preventing secondary brain damage after head injury: a multidisciplinary challenge. Injury 1990; 21:305–308.
6. Feigin, V.L., et al., Incidence of traumatic brain injury in New Zealand: a population-based study. The Lancet Neurology, 2013; 12(1): p. 53-64.
7. Feng D, Ma Y, Zhang Y, Plets C, Goffin J, Chen J. Controlled study of nimodipine in treatment of patients with diffuse axonal injury. Chin J Traumatol. 2000;3(2):85–8.
8. Liu, W.-C., Wen, L., Xie, T., Wang, H., Gong, J.-B., & Yang, X.-F. Therapeutic effect of erythropoietin in patients with traumatic brain injury: a meta-analysis of randomized controlled trials. Journal of Neurosurgery. 2017; 127(1), 8–15.
9. Stein, D. G. Embracing failure: What the Phase III progesterone studies can teach about TBI clinical trials. Brain Injury. 2015; 29(11), 1259-1272.
10. Vakhtin, A. A., Calhoun, V. D., Jung, R. E., Prestopnik, J. L., Taylor, P. A., & Ford, C. C. Changes in intrinsic functional brain networks following blast-induced mild traumatic brain injury. Brain Injury. 2013; 27(11), 1304-1310.
11. Daneshvar, D. H., Goldstein, L. E., Kiernan, P. T., Stein, T. D., & McKee, A. C. Post-traumatic neurodegeneration and chronic traumatic encephalopathy. Molecular & Cellular Neuroscience. 2015; 66, 81-90.
12. Buemi M, Cavallaro E, Floccari F, Sturiale A, Aloisi C, Trimarchi M, et al. The pleiotropic effects of erythropoietin in the central nervous system. J Neuropathol Exp Neurol. 2003; 62:228–36.
13. Juul SE, Anderson DK, Li Y, Christensen RD. Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res. 1998; 43:40–9.1
14. Campana WM, Myers RR. Erythropoietin and erythropoietin receptors in the peripheral nervous system: changes after nerve injury. FASEB J. 2001; 15:1804–6.1
15. Grasso, G., Neuroprotective effect of recombinant human erythropoietin in experimental subarachnoid hemorrhage. Journal of neurosurgical sciences. 2001; 45(1): p. 7.
16. H. H. Marti, M. Gassmann, R. H. Wenger, et al., “Detection of erythropoietin in human liquor: intrinsic erythropoietin production in the brain,” Kidney International. 1997; 51(2) pp. 416–418.
17. S. E. Juul, S. A. Stallings, and R. D. Christensen, “Erythropoietin in the cerebrospinal fluid of neonates who sustained CNS injury,” Pediatric Research. 1999; 46 (5) pp. 543–547.
18. C. Wiessner, P. R. Allegrini, D. Ekatodramis, U. R. Jewell, T. Stallmach, and M. Gassmann, “Increased cerebral infarct volumes in polyglobulic mice overexpressing erythropoietin,” Journal of Cerebral Blood Flow and Metabolism. 2001;21 ( 7), pp. 857–864.
19. Lykissas MG, Korompilias AV, Vekris MD, Mitsionis GI, Sakellariou E, Beris AE. The role of erythropoietin in central and peripheral nerve injury. ClinNeurolNeurosurg. 2007; 109: 639–44.2
20. Bramlett HM, Dietrich WD. Pathophysiology of cerebral ischemia and brain trauma: similarities and diff erences. J Cereb Blood Flow Metab. 2004; 24: 133–50.
21. Lu D, Mahmood A, Qu C, Goussev A, Schallert T, Chopp M. Erythropoietin enhances neurogenesis and restores spatial memory in rats after traumatic brain injury. J Neurotrauma. 2005; 22: 1011–17.
22. Yatsiv I, Grigoriadis N, Simeonidou C, et al. Erythropoietin is neuroprotective, improves functional recovery, and reduces neuronal apoptosis and inflammation in a rodent model of experimental closed head injury. FASEB J. 2005; 19: 1701–23.
23. Talving, P., et al., Erythropoiesis-stimulating agent administration and survival after severe traumatic brain injury: a prospective study. Archives of Surgery. 2012. 147(3): p. 251-255
24. Tsai1, T.H., Lu, C.H., Wallace, C.G., Chang, W.N., Chen, C.F., Huang, C.R., Tsai, N.W., Lan, M.Y., Sung, P.H., Liu, C.F., Yip, H.K. Erythropoietin improves long-term neurological outcome in acute ischemic stroke patients: a randomized, prospective, placebo-controlled clinical trial. Critical Care. 2015; 19:49.
25. Abrishamkar, S., M. Safavi, and A. Honarmand, Effect of erythropoietin on Glasgow Coma Scale and Glasgow Outcome Sale in patient with diffuse axonal injury. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences. 2012. 17(1): p. 51.
26. Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M, Rustenbeck HH, Breiter N, Jacob S, Knerlich F, Bohn M, Poser W, Ruther E, Kochen M, Gefeller O, Gleiter C, Wessel TC, De Ryck M, Itri L, Prange H, et al. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med. 2002; 8(8):495–505.
27. Nirula, R., et al., Safety and efficacy of erythropoietin in traumatic brain injury patients: a pilot randomized trial. Critical care research and practice, 2010.
28. Nichol, A., et al., Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial. The Lancet. 2015. 386(10012): p. 2499-2506.
29. Ehrenreich H, Weissenborn K, Prange H, Schneider D, Weimar C, Wartenberg K, Schellinger PD, Bohn M, Becker H, Wegrzyn M, Jahnig P, Herrmann M, Knauth M, Bahr M, Heide W, Wagner A, Schwab S, Reichmann H, Schwendemann G, Dengler R, et al. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke. 2009; 40(12):e647–656.
30. Gorio A, Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C, et al. Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl AcadSci USA. 2002; 99:9450–5.
31. Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl AcadSci USA. 2000; 97:10526–31.
32. Sir´en AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl AcadSci USA 2001; 98:4044–9.
33. Creager MA. Medical management of peripheral arterial disease. Cardiol Rev. 2001; 9:238–24.

34. Toung TJ, Kirsch JR, Maruki Y, Traystman RJ. Effects of pentoxifylline on cerebral blood flow, metabolism, and evoked response after total cerebral ischemia in dogs. Crit Care Med. 1994; 22:273–281.

35. Vakili A, Mojarrad S, Akhavan MM, Rashidy-Pour A. Pentoxifylline attenuates TNF-α protein levels and brain edema following temporary focal cerebral ischemia in rats. Brain Res. 2011; 1377:119–125
36. Seiffge D. Pentoxifylline: its influence on interaction of blood cells with the vessel wall. Atherosclerosis. 1997; 131:27–28.
37. Windmeier C, Gressner AM. Pharmacological aspects of pentoxifylline with emphasis on its inhibitory actions on hepatic fibrogenesis. Gen Pharmacol. 1997; 29: 181–196.
38. Neves K.R.T. et al. Pentoxifylline Neuroprotective Effects Are Possibly Related to Its Anti-Inflammatory and TNF-Alpha Inhibitory Properties, in the 6-OHDA Model of Parkinson’s Disease.Parkinson’s Disease. 2015; 15.
39. Entzian P, Bitter-Suermann S, Burdon D, Ernst M, Schlaak M, Zabel P. Differences in the anti-inflammatory effects of theophylline and pentoxifylline: important for the development of asthma therapy? Allergy. 1998; 53:749–754.
40. Kreth S, Ledderose C, Luchting B, Weis F, Thiel M. Immunomodulatory properties of pentoxifylline are mediated via adenosine-dependent pathways. Shock. 2010; 34:10–16.
41. Hartmann A, Tsuda Y: A controlled study on the effect of pentoxifylline and an ergot alkaloid derivative on regional cerebral blood flow in patients with chronic cerebrovascular disease. Angiology. 1988; 39:449-457.
42. Hartmann A: Effect of pentoxifylline on regional cerebral blood flow in patients with cerebral vascular disorders. EurNeurol. 1983;22(Suppl):108-115.
43. Goksu1 E. et al. Pentoxifylline Alleviates Early Brain Injury in a Rat Model of Subarachnoid Hemorrhage. ActaNeurochir. 2016; 158:1721–1730
44. David L. et al.Pentoxifylline Increases Cerebral Blood Flowin Patients with Cerebrovascular Disease.1989; Stroke Vol 20, No 12,
45. Bhat A.R. et al. Traumatic brain edema and survival - Effective role of PentoxifyllineBiomedical Research. 2008; 19 (3): 161-167.
46. Eyles, D. W., Burne, T. H. J., & McGrath, J. J. Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Frontiers in Neuroendocrinology. 2013; 34(1), 47-64.
47. Holick, M. F., Binkley, N. C., Bischoff-Ferrari, H. A., Gordon, C. M., Hanley, D. A., Heaney, R. P., & ... Weaver, C. M. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. The Journal of Clinical Endocrinology and Metabolism. 2011;96(7), 1911-1930.
48. Cekic M, Cutler SM, VanLandingham JW, Stein DG. Vitamin D deficiency reduces the benefits of progesterone treatment after brain injury in aged rats. Neurobiol Aging. 2011;32:864-874.
49. Atif, F., Yousuf, S., Sayeed, I., Ishrat, T., Hua, F., & Stein, D. G. Combination treatment with progesterone and vitamin D hormone is more effective than monotherapy in ischemic stroke: the role of BDNF/TrkB/Erk1/2 signaling in neuroprotection. Neuropharmacology. 2013; 67, 78-87.
50. Arabi, S.A. et al. Efficacy of high-dose versus low-dose vitamin D supplementation on serum levels of inflammatory factors and mortality rate in severe traumatic brain injury patients: study protocol for a randomized placebocontrolledtrial.BMC. 2020; 21:685.
51. Lee et al. The Effect of Vitamin D Supplementation in Patients with Acute Traumatic Brain Injury. world-neurosurgery. 2019.
52. Evans M.A. et al. Vitamin D3 Supplementation Reduces Subsequent Brain Injury and Inflammation Associated with Ischemic Stroke. NeuroMolecular Medicine. 2018; 20:147–159.
53. Fu, J., Xue, R., Gu, J., Xiao, Y., Zhong, H., Pan, X., & Ran, R. Neuroprotective effect of calcitriol on ischemic/reperfusion injury through the NR3A/CREB pathways in the rat hippocampus. Molecular Medicine Reports. 2013; 8(6), 1708-1714.
54. Won, S., Sayeed, I., Peterson, B. L., Wali, B., Kahn, J. S., & Stein, D. G. Vitamin D prevents hypoxia/reoxygenation-induced blood-brain barrier disruption via vitamin D receptor-mediated NF-kB signaling pathways. PLoS One. 2015; 10(3), 1-17.
55. Colón, Yuisa M., "Vitamin D Clinical Relevance in the Recovery from Traumatic Brain Injury Among the Military Population". 2016; Honors Undergraduate Theses. 97.

留言 (0)

沒有登入
gif