Discovery of novel neuroprotective cinnamoyl-M30D hybrids targeting Alzheimer’s disease

Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimers Dement. 2021;17:327–406. https://doi.org/10.1002/alz.12328.

Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol. 2018;25:59–70. https://doi.org/10.1111/ene.13439.

CAS  Article  PubMed  Google Scholar 

World Alzheimer Report. 2021. Alzheimer’s Disease International. 2021. https://www.alzint.org/u/World-Alzheimer-Report-2021.pdf.

Barnham KJ, Bush AI. Metals in Alzheimer’s and Parkinson’s diseases. Curr Opin Chem Biol 2008;12:222–8. https://doi.org/10.1016/j.cbpa.2008.02.019.

CAS  Article  PubMed  Google Scholar 

Bush AI. Drug development based on the metals hypothesis of Alzheimer’s disease. J Alzheimer’s Dis. 2008;15:223–40. https://doi.org/10.3233/jad-2008-15208.

CAS  Article  Google Scholar 

Yao L, Zhou Q. Enhancing NMDA receptor function: recent progress on allosteric modulators. Neural Plast. 2017;2017:2875904. https://doi.org/10.1155/2017/2875904.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Santangelo RM, Acker TM, Zimmerman SS, Katzman BM, Strong KL, Traynelis SF, et al. Novel NMDA receptor modulators: an update. Expert Opin Ther Pat. 2012;22:1337–52. https://doi.org/10.1517/13543776.2012.728587.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Liu J, Chang L, Song Y, Li H, Wu Y. The role of NMDA receptors in Alzheimer’s disease. Front Neurosci. 2019;13:43. https://doi.org/10.3389/fnins.2019.00043.

Article  PubMed  PubMed Central  Google Scholar 

Zhao C, Rakesh KP, Ravidar L, Fang WY, Qin HL. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: a critical review. Eur J Med Chem. 2019;162:679–734. https://doi.org/10.1016/j.ejmech.2018.11.017.

CAS  Article  PubMed  Google Scholar 

Fang WY, Ravindar L, Rakesh KP, Manukumar HM, Shantharam CS, Alharbi NS, et al. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: a critical review. Eur J Med Chem. 2019;173:117–53. https://doi.org/10.1016/j.ejmech.2019.03.063.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhang X, Rakesh KP, Bukhari SNA, Balakrishna M, Manukumar HM, Qin HL. Multi-targetable chalcone analogs to treat deadly Alzheimer’s disease: current view and upcoming advice. Bioorg Chem. 2018;80:86–93. https://doi.org/10.1016/j.bioorg.2018.06.009.

CAS  Article  PubMed  Google Scholar 

Xu M, Peng Y, Zhu L, Wang S, Ji J, Rakesh KP. Triazole derivatives as inhibitors of Alzheimer’s disease: current developments and structure-activity relationships. Eur J Med Chem. 2019;180:656–72. https://doi.org/10.1016/j.ejmech.2019.07.059.

CAS  Article  PubMed  Google Scholar 

Zheng H, Youdim MB, Fridkin M. Site-activated chelators targeting acetylcholinesterase and monoamine oxidase for Alzheimer’s therapy. ACS Chem Biol. 2010;5:603–10.610. https://doi.org/10.1021/cb900264w.

CAS  Article  PubMed  Google Scholar 

Zheng H, Amit T, Bar-Am O, Fridkin M, Youdim MB, Mandel SA. From anti-Parkinson’s drug rasagiline to novel multitarget iron chelators with acetylcholinesterase and monoamine oxidase inhibitory and neuroprotective properties for Alzheimer’s disease. J Alzheimers Dis. 2012;30:1–16. https://doi.org/10.3233/JAD-2012-120013.

CAS  Article  PubMed  Google Scholar 

Zhang X, He XX, Chen QH, Lu JF, Rapposelli S, Pi RB. A review on the hybrids of hydroxycinnamic acid as multi-target-directed ligands against Alzheimer’s disease. Bioorg Med Chem 2018;26:543–50. https://doi.org/10.1016/j.bmc.2017.12.042.

CAS  Article  PubMed  Google Scholar 

Gaspar A, Garrido EM, Esteves M, Quezada N, Milhazes E, Garrido J, et al. New insights into the antioxidant activity of hydroxycinnamic acids: Synthesis and physicochemical characterization of novel halogenated derivatives. Eur J Med Chem. 2009;44:2092–9. https://doi.org/10.1016/j.ejmech.2008.10.027.

CAS  Article  PubMed  Google Scholar 

Zhao Z, Song H, Xie J, Liu T, Zhao X, Chen X, et al. Research progress in the biological activities of 3,4,5-trimethoxycinnamic acid (TMCA) derivatives. Eur J Med Chem. 2019;173:213–27. https://doi.org/10.1016/j.ejmech.2019.04.009.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhang WX, Wang H, Cui HR, Guo WB, Zhou F, Cai B, et al. Design, synthesis and biological evaluation of cinnamic acid derivatives with synergetic neuroprotection and angiogenesis effect. Eur J Med Chem. 2019;183:111695–708. https://doi.org/10.1016/j.ejmech.2019.111695.

CAS  Article  PubMed  Google Scholar 

Šebestík J, Marques SM, Falé PL, Santos S, Arduíno DM, Cardoso SM, et al. Bifunctional phenolic-choline conjugates as anti-oxidants and acetylcholinesterase inhibitors. J Enz Inhib Med Chem. 2011;25:1–13. https://doi.org/10.3109/14756366.2010.529806.

CAS  Article  Google Scholar 

Mori T, Koyama N, Tan J, Segawa T, Maeda M, Town T. Combined treatment with the phenolics (–)-epigallocatechin-3-gallate and ferulic acid improves cognition and reduces Alzheimer-like pathology in mice. J Biol Chem. 2019;294:2714–31. https://doi.org/10.1074/jbc.RA118.004280.

CAS  Article  PubMed  Google Scholar 

Wang J, Cai P, Yang XL, Li F, Wu JJ, Kong LY, et al. Novel cinnamamide-dibenzylamine hybrids: Potent neurogenic agents with antioxidant, cholinergic, and neuroprotective properties as innovative drugs for Alzheimer’s disease. Eur J Med Chem. 2017;139:68–83. https://doi.org/10.1016/j.ejmech.2017.07.077.

CAS  Article  PubMed  Google Scholar 

Rosini M, Simoni E, Caporaso R, Basagni F, Catanzaro M, Abu IF, et al. Merging memantine and ferulic acid to probe connections between NMDA receptors, oxidative stress and amyloid-β peptide in Alzheimer’s disease. Eur J Med Chem. 2019;180:111–20. https://doi.org/10.1016/j.ejmech.2019.07.011.

CAS  Article  PubMed  Google Scholar 

Fang L, Kraus B, Lehmann J, Heilmann J, Zhang Y, Decker M. Design and synthesis of tacrine-ferulic acid hybrids as multipotent anti-Alzheimer drug candidates. Bioorg Med Chem Lett. 2008;18:2905–9. https://doi.org/10.1016/j.bmcl.2008.03.073.

CAS  Article  PubMed  Google Scholar 

Chen Y, Zhu J, Mo J, Yang H, Jiang X, Lin H, et al. Synthesis and bioevaluation of new tacrine-cinnamic acid hybrids as cholinesterase inhibitors against Alzheimer’s disease. J Enzym Inhib Med Chem. 2018;33:290–302. https://doi.org/10.1080/14756366.2017.1412314.

CAS  Article  Google Scholar 

Chen Y, Lin H, Zhu J, Gu K, Li Q, He S, et al. Design, synthesis, in vitro and in vivo evaluation of tacrine–cinnamic acid hybrids as multi-target acetyl- and butyrylcholinesterase inhibitors against Alzheimer’s disease. RSC Adv. 2017;7:33851–67. https://doi.org/10.1039/C7RA04385F.

CAS  Article  Google Scholar 

Dias KS, de Paula CT, Dos Santos T, Souza IN, Boni MS, Guimarães MJ, et al. Design, synthesis and evaluation of novel feruloyl-donepezil hybrids as potential multitarget drugs for the treatment of Alzheimer’s disease. Eur J Med Chem. 2017;130:440–57. https://doi.org/10.1016/j.ejmech.2017.02.043.

CAS  Article  PubMed  Google Scholar 

Morroni F, Sita G, Graziosi A, Ravegnini G, Molteni R, Paladini MS, et al. PQM130, a Novel Feruloyl-Donepezil Hybrid Compound, Effectively Ameliorates the Cognitive Impairments and Pathology in a Mouse Model of Alzheimer’s Disease. Front Pharm. 2019;10:658–65. https://doi.org/10.3389/fphar.2019.00658.

CAS  Article  Google Scholar 

Yepes AF, Ramírez CA, Rada MS, Cardona W, Sierra K, Osorio E, et al. Discovery of novel donepezil-M30D hybrids with neuroprotective properties for Alzheimer’s disease treatment. Med Chem Res. 2022. https://doi.org/10.1007/s00044-022-02886-y.

El Safadi M, Bhadbhade M, Shimmon R, Baker AT, McDonagh AM. Cyclen-based chelators for the inhibition of Aβ aggregation: Synthesis, anti-oxidant and aggregation evaluation. Inorg Chim Acta 2017;467:343–50. https://doi.org/10.1016/j.ica.2017.07.060.

CAS  Article  Google Scholar 

Bastos E, Ciscato L, Baader W. Microwave‐assisted protection of phenols as tert‐Butyldimethylsilyl (TBDMS) ethers under solvent‐free conditions. Synth Commun. 2005;35:1501–09. https://doi.org/10.1081/SCC-200057992.

CAS  Article  Google Scholar 

Sova M, Perdih A, Kotnik M, Kristan K, Rizner TL, Solmajer T, et al. Flavonoids and cinnamic acid esters as inhibitors of fungal 17beta-hydroxysteroid dehydrogenase: a synthesis, QSAR and modelling. Bioorg Med Chem. 2006;14:7404–18. https://doi.org/10.1016/j.bmc.2006.07.027.

CAS  Article  PubMed  Google Scholar 

Conway ME. Alzheimer’s disease: targeting the glutamatergic system. Biogerontology. 2020;21:257–4. https://doi.org/10.1007/s10522-020-09860-4.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang R, Reddy PH. Role of glutamate and NMDA receptors in Alzheimer’s disease. J Alzheimers Dis. 2017;57:1041–8. https://doi.org/10.3233/JAD-160763.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Posada-Duque RA, Velasquez-Carvajal D, Eckert GP, Cardona-Gomez GP. Atorvastatin requires geranylgeranyl transferase-I and Rac1 activation to exert neuronal protection and induce plasticity. Neurochem Int. 2013;624:33–45. https://doi.org/10.1016/j.neuint.2013.01.026.

CAS  Article  Google Scholar 

Cortes N, Posada-Duque RA, Alvarez R, Alzate F, Berkov S, Cardona-Gómez GP, et al. Neuroprotective activity and acetylcholinesterase inhibition of five Amaryllidaceae species: a comparative study. Life Sci. 2015;122:42–50. https://doi.org/10.1016/j.lfs.2014.12.011.

CAS  Article  PubMed  Google Scholar 

Riss T. Selecting cell-based assays for drug discovery screening. Cell Notes. 2005;13:16–21.

Verma M, Lizama BN, Chu CT. Excitotoxicity, calcium and mitochondria: a triad in synaptic neurodegeneration. Transl Neurodegener. 2022;11:3–16. https://doi.org/10.1186/s40035-021-00278-7.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Matute C, Alberdi E, Ibarretxe G, Sánchez-Gómez MV. Excitotoxicity in glial cells. Eur J Pharm. 2002;447:239–46. https://doi.org/10.1016/s0014-2999(02)01847-2.

CAS  Article 

留言 (0)

沒有登入
gif