The emerging mechanisms and functions of microautophagy

Klionsky, D. J. Autophagy revisited: a conversation with Christian de Duve. Autophagy 4, 740–743 (2008).

PubMed  Article  Google Scholar 

Marzella, L., Ahlberg, J. & Glaumann, H. Isolation of autophagic vacuoles from rat liver: morphological and biochemical characterization. J. Cell Biol. 93, 144–154 (1982).

CAS  PubMed  Article  Google Scholar 

Kovács, A. L., Reith, A. & Seglen, P. O. Accumulation of autophagosomes after inhibition of hepatocytic protein degradation by vinblastine, leupeptin or a lysosomotropic amine. Exp. Cell Res. 137, 191–201 (1982).

PubMed  Article  Google Scholar 

Klionsky, D. J. et al. A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5, 539–545 (2003).

CAS  PubMed  Article  Google Scholar 

Ohsumi, Y. Historical landmarks of autophagy research. Cell Res. 24, 9–23 (2014).

CAS  PubMed  Article  Google Scholar 

Mizushima, N. A brief history of autophagy from cell biology to physiology and disease. Nat. Cell Biol. 20, 521–527 (2018).

CAS  PubMed  Article  Google Scholar 

Feng, Y., He, D., Yao, Z. & Klionsky, D. J. The machinery of macroautophagy. Cell Res. 24, 24–41 (2014).

CAS  PubMed  Article  Google Scholar 

Kaushik, S. & Cuervo, A. M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 19, 365–381 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bourdenx, M., Gavathiotis, E. & Cuervo, A. M. Chaperone-mediated autophagy: a gatekeeper of neuronal proteostasis. Autophagy 17, 2040–2042 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mijaljica, D., Prescott, M. & Devenish, R. J. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7, 673–682 (2011).

CAS  PubMed  Article  Google Scholar 

Ahlberg, J., Marzella, L. & Glaumann, H. Uptake and degradation of proteins by isolated rat liver lysosomes. Suggestion of a microautophagic pathway of proteolysis. Lab. Invest. 47, 523–532 (1982).

CAS  PubMed  Google Scholar 

Marzella, L., Ahlberg, J. & Glaumann, H. Autophagy, heterophagy, microautophagy and crinophagy as the means for intracellular degradation. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 36, 219–234 (1981).

CAS  PubMed  Article  Google Scholar 

Ahlberg, J. & Glaumann, H. Uptake–microautophagy–and degradation of exogenous proteins by isolated rat liver lysosomes. Effects of pH, ATP, and inhibitors of proteolysis. Exp. Mol. Pathol. 42, 78–88 (1985).

CAS  PubMed  Article  Google Scholar 

Ahlberg, J., Berkenstam, A., Henell, F. & Glaumann, H. Degradation of short and long lived proteins in isolated rat liver lysosomes. Effects of pH, temperature, and proteolytic inhibitors. J. Biol. Chem. 260, 5847–5854 (1985).

CAS  PubMed  Article  Google Scholar 

de Waal, E. J., Vreeling-Sindelarova, H., Schellens, J. P., Houtkooper, J. M. & James, J. Quantitative changes in the lysosomal vacuolar system of rat hepatocytes during short-term starvation. A morphometric analysis with special reference to macro- and microautophagy. Cell Tissue Res. 243, 641–648 (1986).

PubMed  Article  Google Scholar 

Mortimore, G. E., Lardeux, B. R. & Adams, C. E. Regulation of microautophagy and basal protein turnover in rat liver. Effects of short-term starvation. J. Biol. Chem. 263, 2506–2512 (1988).

CAS  PubMed  Article  Google Scholar 

Mortimore, G. E., Hutson, N. J. & Surmacz, C. A. Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proc. Natl Acad. Sci. USA 80, 2179–2183 (1983).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Oku, M. & Sakai, Y. Three distinct types of microautophagy based on membrane dynamics and molecular machineries. Bioessays 40, e1800008 (2018).

PubMed  Article  Google Scholar 

Uttenweiler, A. & Mayer, A. Microautophagy in the yeast Saccharomyces cerevisiae. Methods Mol. Biol. 445, 245–259 (2008).

CAS  PubMed  Article  Google Scholar 

Schuck, S., Gallagher, C. M. & Walter, P. ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery. J. Cell Sci. 127, 4078–4088 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Shen, H. M. & Mizushima, N. At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem. Sci. 39, 61–71 (2014).

CAS  PubMed  Article  Google Scholar 

Zhao, Y. G., Codogno, P. & Zhang, H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-021-00392-4 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Kirkin, V. & Rogov, V. V. A diversity of selective autophagy receptors determines the specificity of the autophagy pathway. Mol. Cell 76, 268–285 (2019).

CAS  PubMed  Article  Google Scholar 

Anding, A. L. & Baehrecke, E. H. Cleaning house: selective autophagy of organelles. Dev. Cell 41, 10–22 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017).

CAS  PubMed  Article  Google Scholar 

Quiles, J. M. & Gustafsson, A. B. Mitochondrial quality control and cellular proteostasis: two sides of the same coin. Front. Physiol. 11, 515 (2020).

PubMed  PubMed Central  Article  Google Scholar 

Ni, H. M., Williams, J. A. & Ding, W. X. Mitochondrial dynamics and mitochondrial quality control. Redox Biol. 4, 6–13 (2015).

CAS  PubMed  Article  Google Scholar 

Pickles, S., Vigie, P. & Youle, R. J. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol. 28, R170–R185 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang, L., Qi, H., Tang, Y. & Shen, H.-M. Post-translational modifications of key machinery in the control of mitophagy. Trends Biochem. Sci. 45, 58–75 (2020).

CAS  PubMed  Article  Google Scholar 

Kissová, I. et al. Selective and non-selective autophagic degradation of mitochondria in yeast. Autophagy 3, 329–336 (2007).

PubMed  Article  Google Scholar 

Kissová, I., Deffieu, M., Manon, S. & Camougrand, N. Uth1p is involved in the autophagic degradation of mitochondria. J. Biol. Chem. 279, 39068–39074 (2004).

PubMed  Article  CAS  Google Scholar 

Welter, E. et al. Uth1 is a mitochondrial inner membrane protein dispensable for post-log-phase and rapamycin-induced mitophagy. FEBS J. 280, 4970–4982 (2013).

CAS  PubMed  Article  Google Scholar 

Lemasters, J. J. Variants of mitochondrial autophagy: types 1 and 2 mitophagy and micromitophagy (type 3). Redox Biol. 2, 749–754 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lemasters, J. J. & Zhong, Z. Mitophagy in hepatocytes: types, initiators and role in adaptive ethanol metabolism. Liver Res. 2, 125–132 (2018).

PubMed  PubMed Central  Article  Google Scholar 

Miyamoto, Y. et al. Possible existence of lysosome-like organella within mitochondria and its role in mitochondrial quality control. PLoS ONE 6, e16054 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kitamura, N. et al. Mieap, a p53-inducible protein, controls mitochondrial quality by repairing or eliminating unhealthy mitochondria. PLoS ONE 6, e16060 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nakamura, Y. et al. BNIP3 and NIX mediate Mieap-induced accumulation of lysosomal proteins within mitochondria. PLoS ONE 7, e30767 (2012). This study reveals that SPATA18 interacts with BNIP3 or BNIP3L to induce MALM in a reactive oxygen species-dependent manner, leading to the elimination of oxidized mitochondrial proteins.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nakamura, Y. & Arakawa, H. Discovery of Mieap-regulated mitochondrial quality control as a new function of tumor suppressor p53. Cancer Sci. 108, 809–817 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wong, Y. C., Ysselstein, D. & Krainc, D. Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysi

留言 (0)

沒有登入
gif