Mechanisms and roles of podosomes and invadopodia

Trepat, X., Chen, Z. & Jacobson, K. Cell migration. Compr. Physiol. 2, 2369–2392 (2012).

PubMed  PubMed Central  Article  Google Scholar 

Schumacher, L. Collective cell migration in development. Adv. Exp. Med. Biol. 1146, 105–116 (2019).

CAS  PubMed  Article  Google Scholar 

Yamaguchi, H., Wyckoff, J. & Condeelis, J. Cell migration in tumors. Curr. Opin. Cell Biol. 17, 559–564 (2005).

CAS  PubMed  Article  Google Scholar 

Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

CAS  PubMed  Article  Google Scholar 

Parsons, J. T., Horwitz, A. R. & Schwartz, M. A. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–643 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Renkawitz, J. et al. Nuclear positioning facilitates amoeboid migration along the path of least resistance. Nature 568, 546–550 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wolf, K. et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Marchisio, P. C. et al. Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J. Cell Biol. 99, 1696–1705 (1984).

CAS  PubMed  Article  Google Scholar 

Monsky, W. L. et al. Binding and localization of Mr 72,000 matrix metalloproteinase at cell surface invadopodia. Cancer Res. 53, 3159–3164 (1993).

CAS  PubMed  Google Scholar 

Alexander, N. R. et al. Extracellular matrix rigidity promotes invadopodia activity. Curr. Biol. 18, 1295–1299 (2008). This highly innovative work introduces a novel microscopic technique for measuring protrusive forces at all podosomes of several cells simultaneously.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pourfarhangi, K. E., Bergman, A. & Gligorijevic, B. ECM cross-linking regulates invadopodia dynamics. Biophys. J. 114, 1455–1466 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gong, Z., van den Dries, K., Cambi, A. & Shenoy, V. B. Chemo-mechanical diffusion waves orchestrate collective dynamics of immune cell podosomes. bioRxiv https://doi.org/10.1101/2021.11.23.469591 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Spuul, P. et al. VEGF-A/notch-induced podosomes proteolyse basement membrane collagen-IV during retinal sprouting angiogenesis. Cell Rep. 17, 484–500 (2016). This detailed and beautiful work demonstrates the relevance of endothelial podosomes in vivo, by using a model of retinal neovascularization.

CAS  PubMed  Article  Google Scholar 

Hagedorn, E. J. et al. The netrin receptor DCC focuses invadopodia-driven basement membrane transmigration in vivo. J. Cell Biol. 201, 903–913 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ferrari, R. et al. MT1-MMP directs force-producing proteolytic contacts that drive tumor cell invasion. Nat. Commun. 10, 4886 (2019). This highly interesting study investigates the ultrastructure and dynamics of collagenolytic invadopdia and demonstrates a dual role for MT1-MMP as both an initiator and a proteolytic effector of invadopodia.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Albiges-Rizo, C., Destaing, O., Fourcade, B., Planus, E. & Block, M. R. Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. J. Cell Sci. 122, 3037–3049 (2009).

CAS  PubMed  Article  Google Scholar 

Linder, S. The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol. 17, 107–117 (2007).

CAS  PubMed  Article  Google Scholar 

Linder, S. & Wiesner, C. Tools of the trade: podosomes as multipurpose organelles of monocytic cells. Cell. Mol. life Sci. 72, 121–135 (2015).

CAS  PubMed  Article  Google Scholar 

Linder, S., Wiesner, C. & Himmel, M. Degrading devices: invadosomes in proteolytic cell invasion. Annu. Rev. Cell Dev. Biol. 27, 185–211 (2011).

CAS  PubMed  Article  Google Scholar 

Murphy, D. A. & Courtneidge, S. A. The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat. Rev. Mol. Cell Biol. 12, 413–426 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

van den Dries, K., Bolomini-Vittori, M. & Cambi, A. Spatiotemporal organization and mechanosensory function of podosomes. Cell Adhes. Migr. 8, 268–272 (2014).

Article  Google Scholar 

Revach, O. Y. & Geiger, B. The interplay between the proteolytic, invasive, and adhesive domains of invadopodia and their roles in cancer invasion. Cell Adhes. Migr. 8, 215–225 (2014).

Article  Google Scholar 

Revach, O. Y., Grosheva, I. & Geiger, B. Biomechanical regulation of focal adhesion and invadopodia formation. J. Cell Sci. https://doi.org/10.1242/jcs.244848 (2020).

Article  PubMed  Google Scholar 

Eddy, R. J., Weidmann, M. D., Sharma, V. P. & Condeelis, J. S. Tumor cell invadopodia: invasive protrusions that orchestrate metastasis. Trends Cell Biol. 27, 595–607 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Marchisio, P. C. Fortuitous birth, convivial baptism and early youth of podosomes. Eur. J. Cell Biol. 91, 820–823 (2012).

CAS  PubMed  Article  Google Scholar 

Maurin, J., Blangy, A. & Bompard, G. Regulation of invadosomes by microtubules: not only a matter of railways. Eur. J. Cell Biol. 99, 151109 (2020).

CAS  PubMed  Article  Google Scholar 

Cambi, A. & Chavrier, P. Tissue remodeling by invadosomes. Fac. Rev. 10, 39 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Weber, K., Hey, S., Cervero, P. & Linder, S. The circle of life: phases of podosome formation, turnover and reemergence. Eur. J. Cell Biol. 101, 151218 (2022).

CAS  PubMed  Article  Google Scholar 

Magalhaes, M. A. et al. Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway. J. Cell Biol. 195, 903–920 (2011). This study demonstrates that dynamic cycles of invadopodium protrusion are regulated by NHE1-dependent changes in pH which regulate the interaction of cofilin and cortactin at invadopodia.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gaertner, F. et al. WASp triggers mechanosensitive actin patches to facilitate immune cell migration in dense tissues. Dev. Cell https://doi.org/10.1016/j.devcel.2021.11.024 (2021).

Article  PubMed  Google Scholar 

Linder, S., Nelson, D., Weiss, M. & Aepfelbacher, M. Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc. Natl Acad. Sci. USA 96, 9648–9653 (1999). This study reveals the first cellular function for WASP and a respective role in human disease, and introduces podosomes to a wider scientific audience.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Luxenburg, C. et al. The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly. PLoS ONE 2, e179 (2007).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Wiesner, C., Faix, J., Himmel, M., Bentzien, F. & Linder, S. KIF5B and KIF3A/KIF3B kinesins drive MT1-MMP surface exposure, CD44 shedding, and extracellular matrix degradation in primary macrophages. Blood 116, 1559–1569 (2010).

CAS  PubMed  Article  Google Scholar 

Moreau, V., Tatin, F., Varon, C. & Genot, E. Actin can reorganize into podosomes in aortic endothelial cells, a process controlled by Cdc42 and RhoA. Mol. Cell. Biol. 23, 6809–6822 (2003).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tarone, G., Cirillo, D., Giancotti, F. G., Comoglio, P. M. & Marchisio, P. C. Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. Exp. Cell Res. 159, 141–157 (1985).

CAS  PubMed  Article  Google Scholar 

Revach, O. Y. et al. Mechanical interplay between invadopodia and the nucleus in cultured cancer cells. Sci. Rep. 5, 9466 (2015). This study expertly uses correlative light and electron microscopy to show that invadopodia apply forces on the cell nucleus, which likely supports protrusion into the matrix.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Van Goethem, E., Poincloux, R., Gauffre, F., Maridonneau-Parini, I. & Le Cabec, V. Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures. J. Immunol. 184, 1049–1061 (2010).

PubMed  Article  CAS  Google Scholar 

Wiesner, C., El Azzouzi, K. & Linder, S. A specific subset of RabGTPases controls cell surface exposure of MT1-MMP, extracellular matrix degradation and three-dimensional invasion of macrophages. J. Cell Sci. 126, 2820–2833 (2013).

留言 (0)

沒有登入
gif