Oxygen toxicity: cellular mechanisms in normobaric hyperoxia

Abbas M, Moradi F, Hu W, Regudo KL, Osborne M, Pettipas J, et al. Vertebrate cell culture as an experimental approach – limitations and solutions. Comp Biochem Physiol B Biochem Mol Biol. 2021;254: 110570.

CAS  PubMed  Article  Google Scholar 

Acehan D, Malhotra A, Xu Y, Ren M, Stokes DL, Schlame M. Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria. Biophys J. 2011;100:2184–92.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Agarwal S, Sohal RS. DNA oxidative damage and life expectancy in houseflies. Proc Natl Acad Sci U S A. 1994;91:12332–5.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Aguilera O, Fernández AF, Muñoz A, Fraga MF. epigenetics and environment: a complex relationship. J Appl Physiol. 2010;109:243–51.

CAS  PubMed  Article  Google Scholar 

Alam MA, Betal SGnee, Aghai ZH, Bhandari V. Hyperoxia causes miR199a-5p-mediated injury in the developing lung. Pediatr Res. 2019;86:579–88.

CAS  PubMed  Article  Google Scholar 

Al-Ani A, Toms D, Kondro D, Thundathil J, Yu Y, Ungrin M. Oxygenation in cell culture: critical parameters for reproducibility are routinely not reported. PLoS One. 2018;13. https://doi.org/10.1371/journal.pone.0204269.

Alfadda AA, Sallam RM. Reactive oxygen species in health and disease. J Biomed Biotechnol. 2012;2012: 936486.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Al-Shmgani HS, Moate RM, Sneyd JR, Macnaughton PD, Moody AJ. Hyperoxia-induced ciliary loss and oxidative damage in an in vitro bovine model: the protective role of antioxidant vitamins E and C. Biochem Biophys Res Commun. 2012;429:191–6.

CAS  PubMed  Article  Google Scholar 

Alva R, Abbas M, Bagshaw OR, Moffatt C, Gardner G, Stuart JA. Mitochondrial oxygen toxicity; In de Oliveria MR (ed): Mitochondrial Intoxication, edn 1. Academic Press, in press.

Amarelle L, Quintela L, Hurtado J, Malacrida L. Hyperoxia and lungs: what we have learned from animal models. Front Med (Lausanne). 2021;8: 606678.

Article  Google Scholar 

Asikainen TM, Schneider BK, Waleh NS, Clyman RI, Ho W-B, Flippin LA, et al. Activation of hypoxia-inducible factors in hyperoxia through prolyl 4-hydroxylase blockade in cells and explants of primate lung. Proc Natl Acad Sci U S A. 2005;102:10212–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Asikainen TM, Chang L-Y, Coalson JJ, Schneider BK, Waleh NS, Ikegami M, et al. Improved lung growth and function through hypoxia-inducible factor in primate chronic lung disease of prematurity. FASEB J. 2006;20:1698–700.

CAS  PubMed  Article  Google Scholar 

Audi SH, Friedly N, Dash RK, Beyer AM, Clough Av, Jacobs ER. Detection of hydrogen peroxide production in the isolated rat lung using Amplex red. Free Radic Res. 2018;52:1052–62.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Audi SH, Ganesh S, Taheri P, Zhang X, Dash RK, Clough Av, et al. Depolarized mitochondrial membrane potential and protection with duroquinone in isolated perfused lungs from rats exposed to hyperoxia. J Appl Physiol. 2022;132:346–56.

CAS  PubMed  Article  Google Scholar 

Auten RL, Mason SN, Auten KM, Brahmajothi M. Hyperoxia impairs postnatal alveolar epithelial development via NADPH oxidase in newborn mice. Am J Physiol Lung Cell Mol Physiol. 2009;297:L134–42.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Baburina Y, Krestinin R, Odinokova I, Sotnikova L, Kruglov A, Krestinina O. Astaxanthin inhibits mitochondrial permeability transition pore opening in rat heart mitochondria. Antioxidants. 2019;8:576.

CAS  PubMed Central  Article  Google Scholar 

Baird L, Yamamoto M. The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol Cell Biol. 2020;40: e0009920.

Article  Google Scholar 

Balin AK, Goodman DBP, Rasmussen H, Cristofalo VJ. The effect of oxygen and vitamin E on the lifespan of human diploid cells in vitro. J Cell Biol. 1977;74:58–67.

CAS  PubMed  Article  Google Scholar 

Bandali KS, Belanger MP, Wittnich C, Wittnich Hyperoxia C. Hyperoxia causes oxygen free radical-mediated membrane injury and alters myocardial function and hemodynamics in the newborn. Am J Physiol Heart Circ Physiol. 2004;287:H553–9.

CAS  PubMed  Article  Google Scholar 

Bao TP, Wu R, Cheng HP, Cui XW, Tian ZF. Differential expression of long non-coding RNAs in hyperoxia-induced bronchopulmonary dysplasia. Cell Biochem Funct. 2016;34:299–309.

CAS  PubMed  Article  Google Scholar 

Barazzone C, Horowitz S, Donati YR, Rodriguez I, Piguet P-F. Oxygen toxicity in mouse lung: pathways to cell death. Am J Respir Cell Mol Biol. 1998;19:573–81.

CAS  PubMed  Article  Google Scholar 

Barazzone Argiroffo C, Donati YR, Boccard J, Rochat AF, Vesin C, Kan C-D, et al. CD40-CD40 ligand disruption does not prevent hyperoxia-induced injury. Am J Pathol. 2002;160:67–71.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Barazzone-Argiroffo C, Pagano A, Juge C, Trailler IM, Rochat A, Vesin C, et al. Glucocorticoids aggravate hyperoxia-induced lung injury through decreased nuclear factor-kB activity. Am J Physiol Lung Cell Mol Physiol. 2003;284:L197–204.

CAS  PubMed  Article  Google Scholar 

Barreiro E, Garcia-Martínez C, Mas S, Ametller E, Gea J, Argilés JM, et al. UCP3 overexpression neutralizes oxidative stress rather than nitrosative stress in mouse myotubes. FEBS Lett. 2009;583:350–6.

CAS  PubMed  Article  Google Scholar 

Battelli MG, Polito L, Bortolotti M, Bolognesi A. Xanthine oxidoreductase-derived reactive species: physiological and pathological effects. Oxid Med Cell Longev. 2016;2016. https://doi.org/10.1155/2016/3527579.

Bean JW, Johnson PC. Adrenocortical response to single and repeated exposure to oxygen at high pressure. Am J Physiol. 1954;179:410–4.

CAS  PubMed  Article  Google Scholar 

Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313.

CAS  PubMed  Article  Google Scholar 

Bellezza I, Giambanco I, Minelli A, Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res. 2018;1865:721–33.

CAS  PubMed  Article  Google Scholar 

Berger J, Bhandari V. Animal models of bronchopulmonary dysplasia. The term mouse models. Am J Physiol Lung Cell Mol Physiol. 2014;307:L936–47.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bernardes CF, Meyer-Fernandes JR, Basseres DS, Castilho RF, Vercesi AE. Ca2+-dependent permeabilization of the inner mitochondrial membrane by 4,4’-diisothiocyanatostilbene-2,2’-disulfonic acid (DIDS). Biochim Biophys Acta. 1994;1188:93–100.

CAS  PubMed  Article  Google Scholar 

Bernardi P, di Lisa F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol. 2015;78:100–6.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bernardi P, Carraro M, Lippe G. The mitochondrial permeability transition: recent progress and open questions. FEBS J. 2021. https://doi.org/10.1111/febs.16254.

Article  PubMed  Google Scholar 

Bert P. La pression barométrique: Recherches de physiologie expérimentale, ed 1. Paris, 1878.

Bhandari V. Hyperoxia-derived lung damage in preterm infants. Semin Fetal Neonatal Med. 2010;15:223–9.

PubMed  PubMed Central  Article  Google Scholar 

Bik-Multanowski M, Revhaug C, Grabowska A, Dobosz A, Madetko-Talowska A, Zasada M, et al. Hyperoxia induces epigenetic changes in newborn mice lungs. Free Radic Biol Med. 2018;121:51–6.

CAS  PubMed  Article  Google Scholar 

Block ER. Interaction between oxygen and cell membranes: modification of membrane lipids to enhance pulmonary artery endothelial cell tolerance to hypoxia. Exp Lung Res. 1988;14:937–58.

CAS  PubMed  Article  Google Scholar 

Bouch S, O’reilly M, Harding R, Sozo F. Neonatal exposure to mild hyperoxia causes persistent increases in oxidative stress and immune cells in the lungs of mice without altering lung structure. Am J Physiol Lung Cell Mol Physiol. 2015;309:L488–96.

CAS  PubMed  Article  Google Scholar 

Bracken CP, Fedele AO, Linke S, Balrak W, Lisy K, Whitelaw ML, et al. Cell-specific regulation of hypoxia-inducible factor (HIF)-1α and HIF-2α stabilization and transactivation in a graded oxygen environment. J Biol Chem. 2006;281:22575–85.

CAS  PubMed  Article  Google Scholar 

Brand MD. The sites and topology of mitochondrial superoxide production. Exp Gerontol. 2010;45:466–72.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Brown GC, Borutaite V. Interactions between nitric oxide, oxygen, reactive oxygen species and reactive nitrogen species. Biochem Soc Trans. 2006;34:953–6.

CAS  PubMed  Article  Google Scholar 

Brueckl C, Kaestle S, Kerem A, Habazettl H, Krombach F, Kuppe H, et al. Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. Am J Respir Cell Mol Biol. 2006;34:453–63.

CAS  PubMed 

留言 (0)

沒有登入
gif