Insights and opportunities at the crossroads of cancer and neuroscience

Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

CAS  Article  PubMed  Google Scholar 

Monje, M. et al. Roadmap for the emerging field of cancer neuroscience. Cell 181, 219–222 (2020).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Faulkner, S., Jobling, P., March, B., Jiang, C. C. & Hondermarck, H. Tumor neurobiology and the war of nerves in cancer. Cancer Discov. 9, 702–710 (2019).

CAS  Article  PubMed  Google Scholar 

Reiche, E. M., Nunes, S. O. & Morimoto, H. K. Stress, depression, the immune system and cancer. Lancet Oncol. 5, 617–625 (2004).

CAS  Article  PubMed  Google Scholar 

Li, L. & Hanahan, D. Hijacking the neuronal NMDAR signaling circuit to promote tumor growth and invasion. Cell 153, 86–100 (2013).

CAS  Article  PubMed  Google Scholar 

Li, L. et al. GKAP acts as a genetic modulator of NMDAR signaling to govern invasive tumor growth. Cancer Cell 33, 736–751 (2018).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Venkatesh, H. S. et al. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161, 803–816 (2015).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Venkatesh, H. S. et al. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549, 533–537 (2017).

PubMed Central  Article  CAS  PubMed  Google Scholar 

Venkataramani, V. et al. Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573, 532–538 (2019).

CAS  Article  PubMed  Google Scholar 

Venkatesh, H. S. et al. Electrical and synaptic integration of glioma into neural circuits. Nature 573, 539–545 (2019).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Zeng, Q. et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature 573, 526–531 (2019).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Latario, C. J. et al. Tumor microtubes connect pancreatic cancer cells in an Arp2/3 complex-dependent manner. Mol. Biol. Cell 31, 1259–1272 (2020).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Winkler, F. & Wick, W. Harmful networks in the brain and beyond. Science 359, 1100–1101 (2018).

CAS  Article  PubMed  Google Scholar 

Osswald, M. et al. Brain tumour cells interconnect to a functional and resistant network. Nature 528, 93–98 (2015).

CAS  Article  PubMed  Google Scholar 

Weil, S. et al. Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas. Neuro Oncol. 19, 1316–1326 (2017).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Jung, E. et al. Tumor cell plasticity, heterogeneity and resistance in crucial microenvironmental niches in glioma. Nat. Commun. 12, 1014 (2021).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Jung, E. et al. Tweety-homolog 1 drives brain colonization of gliomas. J. Neurosci. 37, 6837–6850 (2017).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Magnon, C. et al. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 (2013).

Article  PubMed  Google Scholar 

Magnon, C. Role of the autonomic nervous system in tumorigenesis and metastasis. Mol. Cell Oncol. 2, e975643 (2015).

PubMed Central  Article  CAS  PubMed  Google Scholar 

Renz, B. W. et al. β2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell 33, 75–90 e7 (2018).

CAS  Article  PubMed  Google Scholar 

Kamiya, A. et al. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat. Neurosci. 22, 1289–1305 (2019).

CAS  Article  PubMed  Google Scholar 

Gillespie, S. & Monje, M. The neural regulation of cancer. Annu. Rev. Cancer Biol. 4, 371–390 (2020).

Article  Google Scholar 

Zahalka, A. H. & Frenette, P. S. Nerves in cancer. Nat. Rev. Cancer 20, 143–157 (2020).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Pundavela, J. et al. Nerve fibers infiltrate the tumor microenvironment and are associated with nerve growth factor production and lymph node invasion in breast cancer. Mol. Oncol. 9, 1626–1635 (2015).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Yang, E. V. et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res. 66, 10357–10364 (2006).

CAS  Article  PubMed  Google Scholar 

Azuma, H. et al. Gamma-aminobutyric acid as a promoting factor of cancer metastasis; induction of matrix metalloproteinase production is potentially its underlying mechanism. Cancer Res. 63, 8090–8096 (2003).

CAS  PubMed  Google Scholar 

Bapat, A. A., Hostetter, G., Von Hoff, D. D. & Han, H. Perineural invasion and associated pain in pancreatic cancer. Nat. Rev. Cancer 11, 695–707 (2011).

CAS  Article  PubMed  Google Scholar 

Chen, S. H. et al. Perineural invasion of cancer: a complex crosstalk between cells and molecules in the perineural niche. Am. J. Cancer Res. 9, 1–21 (2019).

PubMed Central  PubMed  Google Scholar 

He, S. et al. GFRα1 released by nerves enhances cancer cell perineural invasion through GDNF-RET signaling. Proc. Natl Acad. Sci. USA 111, E2008–E2017 (2014).

CAS  PubMed Central  PubMed  Google Scholar 

Hirth, M. et al. CXCL10 and CCL21 promote migration of pancreatic cancer cells toward sensory neurons and neural remodeling in tumors in mice, associated with pain in patients. Gastroenterology 159, 665–681 (2020).

CAS  Article  PubMed  Google Scholar 

Deborde, S. et al. Schwann cells induce cancer cell dispersion and invasion. J. Clin. Invest. 126, 1538–1554 (2016).

PubMed Central  Article  PubMed  Google Scholar 

Cavel, O. et al. Endoneurial macrophages induce perineural invasion of pancreatic cancer cells by secretion of GDNF and activation of RET tyrosine kinase receptor. Cancer Res. 72, 5733–5743 (2012).

CAS  Article  PubMed  Google Scholar 

Selvaraj, D. et al. A functional role for VEGFR1 expressed in peripheral sensory neurons in cancer pain. Cancer Cell 27, 780–796 (2015).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Zahalka, A. H. et al. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358, 321–326 (2017).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Huang, S. et al. Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential. Cell 184, 441–459 (2021).

CAS  Article  PubMed  Google Scholar 

Mohammadpour, H. et al. β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J. Clin. Invest. 129, 5537–5552 (2019).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Dubeykovskaya, Z. et al. Neural innervation stimulates splenic TFF2 to arrest myeloid cell expansion and cancer. Nat. Commun. 7, 10517 (2016).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Gao, X. et al. Nociceptive nerves regulate haematopoietic stem cell mobilization. Nature 589, 591–596 (2021).

CAS  Article  PubMed  Google Scholar 

Shwartz, Y. et al. Cell types promoting goosebumps form a niche to regulate hair follicle stem cells. Cell 182, 578–593 (2020).

CAS 

留言 (0)

沒有登入
gif