CO2 exposure enhances Fos expression in hypothalamic neurons in rats during the light and dark phases of the diurnal cycle

Abrahamson EE, Moore RY (2001) The posterior hypothalamic area: chemoarchitecture and afferent connections. Brain Res 889:1–22

CAS  Article  Google Scholar 

Adams JC (1981) Heavy metal intensification of DAB-based HRP reaction product. J Histochem Cytochem 29:775

CAS  Article  Google Scholar 

Arrigoni E, Chee MJS, Fuller PM (2019) To eat or to sleep: that is a lateral hypothalamic question. Neuropharmacology 154:34–49. https://doi.org/10.1016/j.neuropharm.2018.11.017

CAS  Article  PubMed  Google Scholar 

Berquin P, Bodineau L, Gros F, Larnicol N (2000) Brainstem and hypothalamic areas involved in respiratory chemoreflexes: a Fos study in adult rats. Brain Res 857:30–40. https://doi.org/10.1016/S0006-8993(99)02304-5

CAS  Article  PubMed  Google Scholar 

Biancardi V, Bícego KC, Almeida MC, Gargaglioni LH (2008) Locus coeruleus noradrenergic neurons and CO2 drive to breathing. Pflügers Arch 455:1119–1128. https://doi.org/10.1007/s00424-007-0338-8

CAS  Article  PubMed  Google Scholar 

Chiou L-C, Lee H-J, Ho Y-C et al (2010) Orexins/hypocretins: pain regulation and cellular actions. Curr Pharm Des 16:3089–3100

CAS  Article  Google Scholar 

Clifford L, Dampney BW, Carrive P (2015) Spontaneously hypertensive rats have more orexin neurons in their medial hypothalamus than normotensive rats. Exp Physiol 100:388–398. https://doi.org/10.1113/expphysiol.2014.084137

CAS  Article  PubMed  Google Scholar 

da Silva EN, de Horta-Júnior J, AC, Gargaglioni LH, Dias MB, (2018) ATP in the lateral hypothalamus/perifornical area enhances the CO2 chemoreflex control of breathing. Exp Physiol. https://doi.org/10.1113/EP087182

Article  PubMed  PubMed Central  Google Scholar 

Date Y, Ueta Y, Yamashita H et al (1999) Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci USA 96:748–753

CAS  Article  Google Scholar 

de Lecea L, Kilduff TS, Peyron C et al (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci 95:322–327. https://doi.org/10.1073/pnas.95.1.322

Article  PubMed  PubMed Central  Google Scholar 

Deng B-S, Nakamura A, Zhang W et al (2007) Contribution of orexin in hypercapnic chemoreflex: evidence from genetic and pharmacological disruption and supplementation studies in mice. J Appl Physiol 103:1772–1779. https://doi.org/10.1152/japplphysiol.00075.2007

CAS  Article  PubMed  Google Scholar 

Desarnaud F, Murillo-Rodriguez E, Lin L et al (2004) The diurnal rhythm of hypocretin in young and old F344 rats. Sleep 27:851–856. https://doi.org/10.1093/sleep/27.5.851

Article  PubMed  Google Scholar 

Dias MB, Li A, Nattie EE (2009) Antagonism of orexin receptor-1 in the retrotrapezoid nucleus inhibits the ventilatory response to hypercapnia predominantly in wakefulness. J Physiol 587:2059–2067. https://doi.org/10.1113/jphysiol.2008.168260

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dias MB, Li A, Nattie E (2010) The orexin receptor 1 (OX(1)R) in the rostral medullary raphe contributes to the hypercapnic chemoreflex in wakefulness, during the active period of the diurnal cycle. Respir Physiol Neurobiol 170:96–102. https://doi.org/10.1016/j.resp.2009.12.002

CAS  Article  PubMed  Google Scholar 

Dragunow M, Faull R (1989) The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods 29:261–265. https://doi.org/10.1016/0165-0270(89)90150-7

CAS  Article  PubMed  Google Scholar 

Elias CF, Saper CB, Maratos-Flier E et al (1998) Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol 402:442–459

CAS  Article  Google Scholar 

Estabrooke IV, Mccarthy MT, Ko E et al (2001) Fos expression in orexin neurons varies with behavioral state. J Neurosci 21:1656–1662. https://doi.org/10.1152/jn.00927.2005

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gestreau C, Bevengut M, Dutschmann M (2008) The dual role of the orexin/hypocretin system in modulating wakefulness and respiratory drive. Curr Opin Pulm Med 14:512–518. https://doi.org/10.1097/MCP.0b013e32831311d3

CAS  Article  PubMed  Google Scholar 

Grafe LA, Cornfeld A, Luz S et al (2017) Orexins mediate sex differences in the stress response and in cognitive flexibility. Biol Psychiatry 81:683–692. https://doi.org/10.1016/j.biopsych.2016.10.013

CAS  Article  PubMed  Google Scholar 

Guyenet PG, Stornetta RL, Bayliss DA (2008) Retrotrapezoid nucleus and central chemoreception. J Physiol 586:2043–2048. https://doi.org/10.1113/jphysiol.2008.150870

CAS  Article  PubMed  PubMed Central  Google Scholar 

Harris GC, Aston-Jones G (2006) Arousal and reward: a dichotomy in orexin function. Trends Neurosci 29:571–577. https://doi.org/10.1016/j.tins.2006.08.002

CAS  Article  PubMed  Google Scholar 

Harris GC, Wimmer M, Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437:556–559. https://doi.org/10.1038/nature04071

CAS  Article  PubMed  Google Scholar 

Harris GC, Wimmer M, Randall-Thompson JF, Aston-Jones G (2007) Lateral hypothalamic orexin neurons are critically involved in learning to associate an environment with morphine reward. Behav Brain Res 183:43–51. https://doi.org/10.1016/j.bbr.2007.05.025

CAS  Article  PubMed  PubMed Central  Google Scholar 

Herrera DG, Robertson HA (1996) Activation of c-fos in the brain. Prog Neurobiol 50:83–107. https://doi.org/10.1016/S0301-0082(96)00021-4

CAS  Article  PubMed  Google Scholar 

Hoffman GE, Smith MS, Verbalis JG (1993) c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front Neuroendocrinol 14:173–213

CAS  Article  Google Scholar 

Horjales-Araujo E, Hellysaz A, Broberger C (2014) Lateral hypothalamic thyrotropin-releasing hormone neurons: distribution and relationship to histochemically defined cell populations in the rat. Neuroscience 277:87–102. https://doi.org/10.1016/j.neuroscience.2014.06.043

CAS  Article  PubMed  Google Scholar 

Hsu SM, Soban E (1982) Color modification of diaminobenzidine (DAB) precipitation by metallic ions and its application for double immunohistochemistry. J Histochem Cytochem 30:1079–1082

CAS  Article  Google Scholar 

Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580. https://doi.org/10.1177/29.4.6166661

CAS  Article  PubMed  Google Scholar 

Jöhren O, Neidert SJ, Kummer M, Dominiak P (2002) Sexually dimorphic expression of prepro-orexin mRNA in the rat hypothalamus. Peptides 23:1177–1180. https://doi.org/10.1016/S0196-9781(02)00052-9

Article  PubMed  Google Scholar 

Kataoka N, Hioki H, Kaneko T, Nakamura K (2014) Article psychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia. Cell Metab 20:346–358. https://doi.org/10.1016/j.cmet.2014.05.018

CAS  Article  PubMed  Google Scholar 

Kayaba Y, Nakamura A, Kasuya Y et al (2003) Attenuated defense response and low basal blood pressure in orexin knockout mice. Am J Physiol Integr Comp Physiol 285:R581–R593. https://doi.org/10.1152/ajpregu.00671.2002

Article  Google Scholar 

Kiyashchenko LI, Mileykovskiy BY, Maidment N et al (2002) Release of hypocretin (orexin) during waking and sleep states. J Neurosci 22(5282–5286):20026541

Google Scholar 

Krukoff TL (1999) c-fos expression as a marker of functional activity in the brain. In: Boulton AA, Baker GB, Bateson AN (eds) Cell neurobiology techniques. Humana Press, Totowa, NJ, pp 213–230

Google Scholar 

Kuwaki T (2008) Orexinergic modulation of breathing across vigilance states. Respir Physiol Neurobiol 164:204–212. https://doi.org/10.1016/j.resp.2008.03.011

CAS  Article  PubMed  Google Scholar 

Kuwaki T, Li A, Nattie E (2010) State-dependent central chemoreception: a role of orexin. Respir Physiol Neurobiol 173:223–229. https://doi.org/10.1016/j.resp.2010.02.006

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lazarenko RM, Stornetta RL, Bayliss DA, Guyenet PG (2011) Orexin a activates retrotrapezoid neurons in mice. Respir Physiol Neurobiol 175:283–287. https://doi.org/10.1016/j.resp.2010.12.003

CAS  Article  PubMed  Google Scholar 

Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25:6716–6720. https://doi.org/10.1523/JNEUROSCI.1887-05.2005

CAS  Article  PubMed  PubMed Central  Google Scholar 

Leinninger GM, Opland DM, Jo Y-H et al (2011) Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab 14:313–323. https://doi.org/10.1016/j.cmet.2011.06.016

CAS  Article  PubMed  PubMed Central  Google Scholar 

Li A, Nattie E (2010) Antagonism of rat orexin receptors by almorexant attenuates central chemoreception in wakefulness in the active period of the diurnal cycle. J Physiol 588:2935–2944. https://doi.org/10.1113/jphysiol.2010.191288

留言 (0)

沒有登入
gif