Effect of resolvin D1 on experimental bacterial keratitis to prevent corneal scar

Vandivier RW, Henson PM, Douglas IS (2006) Burying the dead: the impact of failed apoptotic cell removal (efferocytosis) on chronic inflammatory lung disease. Chest 129:1673–1682

Article  Google Scholar 

Serhan CN, Savill J (2005) Resolution of inflammation: the beginning programs the end. Nat Immunol 6:1191–1197

CAS  Article  Google Scholar 

Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435

CAS  Article  Google Scholar 

Schwab JM, Serhan CN (2006) Lipoxins and new lipid mediators in the resolution of inflammation. Curr Opin Pharmacol 6:414–420

CAS  Article  Google Scholar 

Ruslan M (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

Article  Google Scholar 

Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

CAS  Article  Google Scholar 

Serhan CN, Brain SD, Buckley CD et al (2007) Resolution of inflammation: state of the art, definitions and terms. FASEB J 21:325–332

CAS  Article  Google Scholar 

Francesco P, Maria CT, Claudio B et al (2020) Resolvin D1 attenuates the inflammatory process in mouse model of LPS-induced keratitis. J Cell Mol Med 24:12298–12307

Article  Google Scholar 

Palmer CD, Mutch BE, Workman S, McDaid JP, Horwood NJ, Foxwell BM (2008) Bmx tyrosine kinase regulates TLR4-induced IL-6 production in human macrophages independently of p38 MAPK and NFkB activity. Blood 111:1781–1788

CAS  Article  Google Scholar 

Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN (2001) Lipid mediator class switching during acute inflammation: signals in resolution. Nat Immunol 2:612–619

CAS  Article  Google Scholar 

Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K (2000) Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med 192:1197–1204

CAS  Article  Google Scholar 

Arita M, Ohira T, Sun YP, Elangovan S, Chiang N, Serhan CN (2007) Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J Immunol 178:3912–3917

CAS  Article  Google Scholar 

Sun Y, Karmakar M, Roy S et al (2010) TLR4 and TLR5 on corneal macrophages regulate Pseudomonas aeruginosa keratitis by signaling through MyD88-dependent and -independent pathways. J Immunol 185:4272–4283

CAS  Article  Google Scholar 

Lee JE, Sun Y, Gjorstrup P, Pearlman E (2015) Inhibition of corneal inflammation by the resolvin E1. Invest Ophthalmol Vis Sci 56:2728–2736

CAS  Article  Google Scholar 

Zhenzhen Z, Xiaoli H, Xia Q et al (2018) Resolvin D1 promotes corneal epithelial wound healing and restoration of mechanical sensation in diabetic mice. Mol Vis 24:274–285

Google Scholar 

Kruszewski FH, Walker TL, DiPasquale LC (1997) Evaluation of a human corneal epithelial cell line as an in vitro model for assessing ocular irritation. Fundam Appl Toxicol 36:130–140

CAS  Article  Google Scholar 

Ueta M, Nochi T, Jang MH et al (2004) Intracellularly expressed TLR2s and TLR4s contribution to an immunosilent environment at the ocular mucosal epithelium. J Immunol 173:3337–3347

CAS  Article  Google Scholar 

Feng T, Cong Y, Qin H, Benveniste EN, Elson CO (2010) Generation of mucosal dendritic cells from bone marrow reveals a critical role of retinoic acid. J Immunol 185:5915–5925

CAS  Article  Google Scholar 

Muccioli M, Pate M, Omosebi O, Benencia F (2011) Generation and labeling of murine bone marrow-derived dendritic cells with Qdot nanocrystals for tracking studies. J Vis Exp 52:2785

Google Scholar 

Johnson AC, Heinzel FP, Diaconu E et al (2005) Activation of toll-like receptor (TLR)2, TLR4, and TLR9 in the mammalian cornea induces MyD88-dependent corneal inflammation. Invest Ophthalmol Vis Sci 46:589–595

Article  Google Scholar 

Khatri S, Lass JH, Heinzel FP et al (2002) Regulation of endotoxin-induced keratitis by PECAM-1, MIP-2, and toll like receptor 4. Invest Ophthalmol Vis Sci 43:2278–2284

PubMed  Google Scholar 

Sun Y, Pearlman E (2009) Inhibition of corneal inflammation by the TLR4 antagonist Eritoran tetrasodium (E5564). Invest Ophthalmol Vis Sci 50:1247–1254

Article  Google Scholar 

Kernacki KA, Goebel DJ, Poosch MS, Hazlett LD (1998) Early TIMP gene expression after corneal infection with Pseudomonas aeruginosa. Invest Ophthalmol Vis Sci 39:331–335

CAS  PubMed  Google Scholar 

Zhang J, Wu XY, Yu FS (2005) Inflammatory responses of corneal epithelial cells to Pseudomonas aeruginosa infection. Curr Eye Res 30:527–534

CAS  Article  Google Scholar 

Kernacki KA, Berk RS (1994) Characterization of the inflammatory response induced by corneal infection with Pseudomonas aeruginosa. J Ocular Pharmacol 10:281–288

CAS  Article  Google Scholar 

Holden BA, Reddy MK, Sankaridurg PR et al (1999) Contact lens-induced peripheral ulcers with extended wear of disposable hydrogel lenses: histopathologic observations on the nature and type of corneal infiltrate. Cornea 18:538–543

CAS  Article  Google Scholar 

Lin M, Carlson E, Diaconu E, Pearlman E (2007) CXCL1/KC and CXCL5/LIX are produced selectively by corneal fibroblasts and mediate neutrophil infiltration to the corneal stroma in LPS keratitis. J Leukoc Biol 81:786–792

CAS  Article  Google Scholar 

Palmer CD, Mancuso CJ, Weiss JP, Serhan CN, Guinan EC, Levy O (2011) 17(R)-Resolvin D1 differentially regulates TLR4-mediated responses of primary human macrophages to purified LPS and live E. coli. J Leukoc Biol 90:459–470

CAS  Article  Google Scholar 

Migeotte I, Communi D, Parmentier M (2006) Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev 17:501–519

CAS  Article  Google Scholar 

Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:349–361

CAS  Article  Google Scholar 

Roy S, Sun Y, Pearlman E (2011) Interferon-γ-induced MD-2 protein expression and lipopolysaccharide (LPS) responsiveness in corneal epithelial cells is mediated by Janus tyrosine kinase-2 activation and direct binding of STAT1 protein to the MD-2 promoter. J Biol Chem 286:23753–23762

CAS  Article  Google Scholar 

Buela KA, Hendricks RL (2015) Cornea-infiltrating and lymph node dendritic cells contribute to CD4+ T cell expansion after herpes simplex virus-1 ocular infection. J Immunol 194(1):379–387

CAS  Article  Google Scholar 

Molesworth-Kenyon SJ, Popham N, Milam A, Oakes JE, Lausch RN (2012) Resident corneal cells communicate with neutrophils leading to the production of IP-10 during the primary inflammatory response to HSV-1 infection. Int J Inflam. https://doi.org/10.1155/2012/810359

Article  PubMed  PubMed Central  Google Scholar 

Gan L, Fagerholm P, Kim HJ (1999) Effect of leukocytes on corneal cellular proliferation and wound healing. Invest Ophthalmol Vis Sci 40:575–581

CAS  PubMed  Google Scholar 

Chiang N, Fredman G, Bäckhed F, Oh SF, Vickery T, Schmidt BA, Serhan CN (2012) Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature 484:524–528

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif