Dityrosine Cross-links are Present in Alzheimer’s Disease-derived Tau Oligomers and Paired Helical Filaments (PHF) which Promotes the Stability of the PHF-core Tau (297–391) In Vitro

Journal of Molecular BiologyJournal of Molecular BiologyVolume 434, Issue 19, 15 October 2022, 167785Journal home page for Journal of Molecular BiologyHighlights•

Alzheimer’s disease derived oligomers, fibrils and neurofibrillary tangles are heavily decorated with dityrosine crosslinks.

Fibrillar tau297-391 aggregates are less amenable to dityrosine crosslinking than prefibrillar aggregates.

Dityrosine crosslinking promotes the insolubility of prefibrillar and fibrillar tau297-391 aggregates.

Abstract

A characteristic hallmark of Alzheimer’s Disease (AD) is the pathological aggregation and deposition of tau into paired helical filaments (PHF) in neurofibrillary tangles (NFTs). Oxidative stress is an early event during AD pathogenesis and is associated with tau-mediated AD pathology. Oxidative environments can result in the formation of covalent dityrosine crosslinks that can increase protein stability and insolubility. Dityrosine cross-linking has been shown in Aβ plaques in AD and α-synuclein aggregates in Lewy bodies in ex vivo tissue sections, and this modification may increase the insolubility of these aggregates and their resistance to degradation. Using the PHF-core tau fragment (residues 297 – 391) as a model, we have previously demonstrated that dityrosine formation traps tau assemblies to reduce further elongation. However, it is unknown whether dityrosine crosslinks are found in tau deposits in vivo in AD and its relevance to disease mechanism is unclear. Here, using transmission electron microscope (TEM) double immunogold-labelling, we reveal that neurofibrillary NFTs in AD are heavily decorated with dityrosine crosslinks alongside tau. Single immunogold-labelling TEM and fluorescence spectroscopy revealed the presence of dityrosine on AD brain-derived tau oligomers and fibrils. Using the tau (297–391) PHF-core fragment as a model, we further showed that prefibrillar tau species are more amenable to dityrosine crosslinking than tau fibrils. Dityrosine formation results in heat and SDS stability of oxidised prefibrillar and fibrillar tau assemblies. This finding has implications for understanding the mechanism governing the insolubility and toxicity of tau assemblies in vivo.

Keywords

Alzheimer’s disease

tau

dityrosine

paired helical filaments

oxidative stress

Crown Copyright © 2022 Published by Elsevier Ltd.

留言 (0)

沒有登入
gif