Palladium-modified TiO2 films in a photocatalytic microreactor: evaluation of radiation absorption properties and pollutant degradation efficiency

Adeyeye, A. O., & Laub, B. G. (2020). Quantification of estrogen concentration in a creek receiving wastewater treatment plant effluent. Environmental Monitoring and Assessment, 192, 426. https://doi.org/10.1007/s10661-020-08394-z

CAS  Article  PubMed  Google Scholar 

Menon, N.G., Mohapatra, S., Padhye, L.P., Tatiparti, S.S.V., Mukherji, S. (2020). Review on occurrence and toxicity of pharmaceutical contamination in Southeast Asia. In: Kumar, M., Snow, D., Honda, R. (eds) Emerging Issues in the Water Environment during Anthropocene. Springer Transactions in Civil and Environmental Engineering. (pp. 63–91). https://doi.org/10.1007/978-981-32-9771-5_4

Kibambe, M. G., Momba, M. N. B., Daso, A. P., Van Zijl, M. C., & Coetzee, M. A. A. (2020). Efficiency of selected wastewater treatment processes in removing estrogen compounds and reducing estrogenic activity using the T47D-KBLUC reporter gene assay. Journal of Environmental Management, 260, 110135. https://doi.org/10.1016/j.jenvman.2020.110135

CAS  Article  PubMed  Google Scholar 

Tran, N. H., Reinhard, M., & Gin, K. Y. H. (2018). Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Research, 133, 182–207. https://doi.org/10.1016/j.watres.2017.12.029

CAS  Article  PubMed  Google Scholar 

Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 photocatalysis: Mechanisms and materials. Chemical Reviews, 114, 9919–9986. https://doi.org/10.1021/cr5001892

CAS  Article  PubMed  Google Scholar 

Gopinath, K., Madhav, N., Krishnan, A., Malolan, R., & Rangarajan, G. (2020). Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review. Journal of Environmental Management, 270, 110906. https://doi.org/10.1016/j.jenvman.2020.110906

CAS  Article  PubMed  Google Scholar 

Menon, G. N., George, L., Tatiparti, S., & Mukherji, S. (2021). Efficacy and reusability of mixed-phase TiO2–ZnO nanocomposites for the removal of estrogenic effects of 17β-Estradiol and 17α-Ethinylestradiol from water. Journal of Environmental Management, 288, 112340. https://doi.org/10.1016/j.jenvman.2021.112340

CAS  Article  PubMed  Google Scholar 

Khaki, M. R. D., Shafeeyan, M. S., Raman, A. A. A., & Daud, W. M. A. W. (2017). Application of doped photocatalysts for organic pollutant degradation—A review. Journal of Environmental Management, 198(2), 78–94. https://doi.org/10.1016/j.jenvman.2017.04.099

CAS  Article  PubMed  Google Scholar 

Wenderich, K., & Mul, G. (2016). Methods, mechanism, and applications of photodeposition in photocatalysis: A review. Chemical Reviews, 116, 14587–14619. https://doi.org/10.1021/acs.chemrev.6b00327

CAS  Article  PubMed  Google Scholar 

Sakthivel, S., Shankar, M. V., Palanichamy, M., Arabindoo, B., Bahnemann, D. W., & Murugesan, V. (2004). Enhancement of photocatalytic activity by metal deposition: Characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research, 38(13), 3001–3008. https://doi.org/10.1016/j.watres.2004.04.046

CAS  Article  PubMed  Google Scholar 

Low, J., Yu, J., Jaroniec, M., Wageh, S., & Al-Ghamdi, A. A. (2017). Heterojunction photocatalysts. Advanced Material, 29, 1–20. https://doi.org/10.1002/adma.201601694

CAS  Article  Google Scholar 

Banerjee, A. N., Hamnabard, N., & Joo, S. W. (2016). A comparative study of the effect of Pd-doping on the structural, optical, and photocatalytic properties of sol–gel derived anatase TiO2 nanoparticles. Ceramics International, 42, 12010–12026. https://doi.org/10.1016/j.ceramint.2016.04.128

CAS  Article  Google Scholar 

Huang, C. J., Pan, F. M., & Chang, I. C. (2012). Enhanced photocatalytic decomposition of methylene blue by the heterostructure of PdO nanoflakes and TiO2 nanoparticles. Applied Surface Science, 263, 345–351. https://doi.org/10.1016/j.apsusc.2012.09.058

CAS  Article  Google Scholar 

Keihan, A. H., Rasoulnezhad, H., Mohammadgholi, A., Sajjadi, S., Hosseinzadeh, R., Farhadian, M., & Hosseinzadeh, G. (2017). Pd nanoparticle loaded TiO2 semiconductor for photocatalytic degradation of Paraoxon pesticide under visible-light irradiation. Journal of Materials Science: Materials in Electronics, 28, 16718–16727. https://doi.org/10.1007/s10854-017-7585-z

CAS  Article  Google Scholar 

Nguyen, C. H., Fu, C.-C., & Juang, R.-S. (2018). Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. Journal of Cleaner Production, 202, 413–427. https://doi.org/10.1016/j.jclepro.2018.08.110

CAS  Article  Google Scholar 

Veziroglu, S., Hwang, J., Drewes, J., Barg, I., Shondo, J., Strunskus, T., Polonskyi, O., Faupel, F., & Aktas, O. C. (2020). PdO nanoparticles decorated TiO2 film with enhanced photocatalytic and self-cleaning properties. Materials Today Chemistry, 16, 100251. https://doi.org/10.1016/j.mtchem.2020.100251

CAS  Article  Google Scholar 

Zhou, W., Guan, Y., Wang, D., Zhang, X., Liu, D., Jiang, H., Wang, J., Liu, X., Liu, H., & Chen, S. (2014). PdO/TiO2 and Pd/TiO2 heterostructured nanobelts with enhanced photocatalytic activity. Chemistry an Asian Journal, 9, 1648–1654. https://doi.org/10.1002/asia.201301638

CAS  Article  PubMed  Google Scholar 

Lee, H., Shin, M., Lee, M., & Hwang, Y. J. (2015). Photo-oxidation activities on Pd-doped TiO2 nanoparticles: Critical PdO formation effect. Applied Catalysis B: Environmental, 165, 20–26. https://doi.org/10.1016/j.apcatb.2014.09.061

CAS  Article  Google Scholar 

Selishchev, D., Svintsitskiy, D., Kovtunova, L., Gerasimov, E., Gladky, A., & Kozlov, D. (2021). Surface modification of TiO2 with Pd nanoparticles for enhanced photocatalytic oxidation of benzene micropollutants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 612(5), 125959. https://doi.org/10.1016/j.colsurfa.2020.125959

CAS  Article  Google Scholar 

Kirilov, M., Koumanova, B., Spasov, L., & Petrov, L. (2006). Effects of Ag and Pd modifications of TiO2 on the photocatalytic degradation of p-chlorophenol in aqueous solution. Journal of the University of Chemical Technology and Metallurgy, 41(3), 343–348.

CAS  Google Scholar 

García-Zaleta, D. S., Montes De Oca-Valero, J. A., Torres-Huerta, A. M., Domínguez-Crespo, M. A., Dorantes-Rosales, H. J., López-González, R., & García-Murillo, A. (2014). Effect of Pd addition on the nanostructure and properties of Pd/TiO2 catalysts for the photocatalytic degradation of 4-chlorophenol. Journal of Nano Research, 28, 9–20. https://doi.org/10.4028/www.scientific.net/jnanor.28.9

Article  Google Scholar 

Motlagh, P. Y., Akay, S., Kayan, B., & Khataee, A. (2021). Ultrasonic assisted photocatalytic process for degradation of ciprofloxacin using TiO2-Pd nanocomposite immobilized on pumice stone. Journal of Industrial and Engineering Chemistry, 104, 582–591. https://doi.org/10.1016/j.jiec.2021.09.007

CAS  Article  Google Scholar 

de la Flor, M. P., Camarillo, R., Martínez, F., Jiménez, C., Quiles, R., & Rincón, J. (2022). Synthesis and characterization of bimetallic TiO2/CNT/Pd-Cu for efficient remediation of endocrine disruptors under solar light. Journal of Environmental Chemical Engineering, 10(2), 107245. https://doi.org/10.1016/j.jece.2022.107245

CAS  Article  Google Scholar 

Satuf, M. L., Macagno, J., Manassero, A., Bernal, G., Kler, P. A., & Berli, C. L. A. (2019). Simple method for the assessment of intrinsic kinetic constants in photocatalytic microreactors. Applied Catalysis B: Environmental, 241, 8–17. https://doi.org/10.1016/j.apcatb.2018.09.015

CAS  Article  Google Scholar 

Rossi, L., Palacio, M., Villabrille, P. I., & Rosso, J. A. (2021). V-doped TiO2 photocatalysts and their application to pollutant degradation. Environmental Science and Pollution Research, 28, 24112–24123. https://doi.org/10.1007/s11356-021-12339-5

CAS  Article  PubMed  Google Scholar 

Shirley, D. A. (1972). High-resolution X-ray photoemission spectrum of the valence bands of gold. Physical Review B, 5, 4709–4713. https://doi.org/10.1103/PhysRevB.5.4709

Article  Google Scholar 

Scofield, J. H. (1976). Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. Journal of Electron Spectroscopy and Related Phenomena, 8, 129–137. https://doi.org/10.1016/0368-2048(76)80015-1

CAS  Article  Google Scholar 

Jackson, N. B., Wang, C. M., Luo, Z., Schwitzgebel, J., Ekerdt, J. G., Brock, J. R., & Heller, A. (1991). Attachment of TiO2 powders to hollow glass microbeads: Activity of the TiO2-coated beads in the photoassisted oxidation of ethanol to acetaldehyde. Journal of The Electrochemical Society, 138, 3660–3664. https://doi.org/10.1149/1.2085476

CAS  Article  Google Scholar 

Siegel, R., & Howell, J. (2002). Thermal radiation heat transfer (4th ed.). Taylor and Francis.

Google Scholar 

Martin, M. V., Alfano, M. O., & Satuf, M. L. (2019). Cerium-doped TiO2 thin films: Assessment of radiation absorption properties and photocatalytic reaction efficiencies in a microrreactor. Journal of Environmental Chemical Engineering, 7, 103478. https://doi.org/10.1016/j.jece.2019.103478

CAS  Article  Google Scholar 

Klug, H. P., & Alexander, L. E. (1974). X-ray diffraction procedures: for polycrystalline and amorphous (2nd ed., pp. 656–687). Wiley-Interscience Publication, John Wiley & Sons.

Google Scholar 

Nie, L., Zhang, L., Zhou, Q., Zhang, Z., Dong, Z., Liu, Q., Yang, L., Zhang, S., Liu, Z., & Pan, G. (2021). An ultra-high aspect ratio BTO nanowires synthesized via slowing the release of barium ions. Vacuum, 194, 110629. https://doi.org/10.1016/j.vacuum.2021.110629

CAS  Article  Google Scholar 

Wagner, C.D., Riggs, W.M., Davis, L.E., Moudler, J.F. & Muilenberg, G.E. (1979). Handbook of X-ray Photoelectron Spectroscopy: a Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy Perkin-Elmer Corp., Edern Prairie MN, p. 1979.

Yang, H., Tang, Z., Yan, W., Wang, L., Wang, Q., Zhang, Y., Liu, Z., & Chen, S. (2017). Peptide capped Pd nanoparticles for oxygen electroreduction: Strong surface effects. Journal of Alloys and Compounds, 702, 146–152. https://doi.org/10.1016/j.jallcom.2017.01.199

CAS  Article  Google Scholar 

Li, L., Liu, C., & Liu, Y. (2009). Study on activities of vanadium (IV/V) doped TiO2(R) nanorods induced by UV and visible light. Materials Chemistry and Physics, 113(2–3), 551–557. https://doi.org/10.1016/j.matchemphys.2008.08.009

CAS  Article  Google Scholar 

Liu, X., Xu, H., Grabstanowicz, L. R., Gao, S., Lou, Z., Wang, W., Huang, B., Dai, Y., & Xu, T. (2014). Ti3+ self-doped TiO2-x anatase nanoparticles via oxidation of TiH2 in H2O2. Catalysis Today, 225, 80–89. https://doi.org/10.1016/j.cattod.2013.08.025

CAS  Article  Google Scholar 

Bailón-García, E., Elmouwahidi, A., Álvarez, M. A., Carrasco-Marín, F., Pérez-Cadenas, A. F., & Maldonado-Hódar, F. J. (2017). New carbon xerogel-TiO2 composites with high performance as visible-light photocatalysts for dye mineralization. Applied Catalysis B: Environmental, 201, 29–40. https://doi.org/10.1016/j.apcatb.2016.08.015

CAS  Article  Google Scholar 

Database. Available at: https://materialsproject.org/materials/mp-1336/. Accessed on 29 April 2022.

Walls, J. M., Sagu, J. S., & Wijayantha, K. G. U. (2019). Microwave synthesised Pd–TiO2 for photocatalytic ammonia production. RSC Advances, 9, 6387–6394. https://doi.org/10.1039/c8ra09762c

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zedan, A. F., Gaber, S., AlJaber, A. S., & Polychronopoulou, K. (2021). CO oxidation at near-ambient temperatures over TiO2-supported Pd-Cu catalysts: Promoting effect of Pd-Cu nanointerface and TiO2 morphology. Nanomaterials, 11, 1675. https://doi.org/10

留言 (0)

沒有登入
gif