Mass Spectrometry-Based Approaches for Clinical Biomarker Discovery in Traumatic Brain Injury

Multiple Cause of Death Data on CDC WONDER [Internet]. [cited 2022 May 28]. Available from: https://wonder.cdc.gov/mcd.html

•• Wilde EA, Wanner I-B, Kenney K, Gill J, Stone JR, Disner S, et al. A framework to advance biomarker development in the diagnosis, outcome prediction, and treatment of traumatic brain injury. J Neurotrauma. 2022;39:436–57. Excellent overview of the concept of biomarkers and their utility in traumatic brain injury.

Article  Google Scholar 

Dadas A, Washington J, Diaz-Arrastia R, Janigro D. Biomarkers in traumatic brain injury (TBI): a review. NDT. 2018;14:2989–3000.

CAS  Article  Google Scholar 

Edalatfar M, Piri SM, Mehrabinejad M-M, Mousavi M-S, Meknatkhah S, Fattahi M-R, et al. Biofluid biomarkers in traumatic brain injury: a systematic scoping review. Neurocrit Care. 2021;35:559–72.

CAS  Article  Google Scholar 

• Bazarian JJ, Biberthaler P, Welch RD, Lewis LM, Barzo P, Bogner-Flatz V, et al. Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): a multicentre observational study. Lancet Neurol. 2018;17:782–9. The study served as the basis for the first FDA-approved blood-based biomarker study in traumatic brain injury.

CAS  Article  Google Scholar 

Gan ZS, Stein SC, Swanson R, Guan S, Garcia L, Mehta D, et al. Blood biomarkers for traumatic brain injury: a quantitative assessment of diagnostic and prognostic accuracy. Front Neurol. 2019;10:446.

Article  Google Scholar 

•• Mondello S, Sorinola A, Czeiter E, Vámos Z, Amrein K, Synnot A, et al. Blood-based protein biomarkers for the management of traumatic brain injuries in adults presenting to emergency departments with mild brain injury: a living systematic review and meta-analysis. J Neurotrauma. 2021;38:1086–106. Comprehensive review of blood-based biomarkers in traumatic brain injury.

Article  Google Scholar 

Mondello S, Muller U, Jeromin A, Streeter J, Hayes RL, Wang KKW. Blood-based diagnostics of traumatic brain injuries. Expert Rev Mol Diagn. 2011;11:65–78.

Article  Google Scholar 

Kingsmore SF. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov. 2006;5:310–21.

CAS  Article  Google Scholar 

Snapkov I, Chernigovskaya M, Sinitcyn P, Quý KL, Nyman TA, Greiff V. Progress and challenges in mass spectrometry-based analysis of antibody repertoires. Trends in Biotechnology Elsevier. 2022;40:463–81.

CAS  Article  Google Scholar 

• Graves PR, Haystead TAJ. Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev. 2002;66:39–63; table of contents. A nice overview of proteomics for those outside the field.

Brown TA. Genomes [Internet]. 2nd ed. Oxford: Wiley-Liss; 2002 [cited 2022 Apr 13]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK21128/

Banerjee S. Empowering clinical diagnostics with mass spectrometry. ACS Omega. 2020;5:2041–8.

CAS  Article  Google Scholar 

Mass Spectrometry: Basics [Internet]. [cited 2022 Apr 13]. Available from: https://masspec.scripps.edu/learn/ms/

Korecka M, Shaw LM. Mass spectrometry-based methods for robust measurement of Alzheimer’s disease biomarkers in biological fluids. J Neurochem. 2021;159:211–33.

CAS  Article  Google Scholar 

Pasinetti GM, Ungar LH, Lange DJ, Yemul S, Deng H, Yuan X, et al. Identification of potential CSF biomarkers in ALS. Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology; 2006;66:1218–22.

Bharucha T, Gangadharan B, Kumar A, de Lamballerie X, Newton PN, Winterberg M, et al. Mass spectrometry-based proteomic techniques to identify cerebrospinal fluid biomarkers for diagnosing suspected central nervous system infections. A systematic review Journal of Infection. 2019;79:407–18.

PubMed  Google Scholar 

Karpievitch YV, Polpitiya AD, Anderson GA, Smith RD, Dabney AR. Liquid chromatography mass spectrometry-based proteomics: Biological and technological aspects. Ann Appl Stat [Internet]. 2010 [cited 2022 Apr 18];4. Available from: https://projecteuclid.org/journals/annals-of-appliedstatistics/volume-4/issue-4/Liquid-chromatography-mass-spectrometry-based-proteomics--Biologicaland-technological/10.1214/10-AOAS341.full

McDonald WH, Yates JR. Shotgun proteomics and biomarker discovery. Dis Markers. 2002;18:99–105.

CAS  Article  Google Scholar 

Singh SA, Aikawa M. Unbiased and targeted mass spectrometry for the HDL proteome. Curr Opin Lipidol. 2017;28:68–77.

CAS  Article  Google Scholar 

Catherman AD, Skinner OS, Kelleher NL. Top Down proteomics: facts and perspectives. Biochem Biophys Res Commun. 2014;445:683–93.

CAS  Article  Google Scholar 

Kochanek AR, Kline AE, Gao W-M, Chadha M, Lai Y, Clark RSB, et al. Gel-based hippocampal proteomic analysis 2 weeks following traumatic brain injury to immature rats using controlled cortical impact. Dev Neurosci. 2006;28:410–9.

CAS  Article  Google Scholar 

Haskins WE, Kobeissy FH, Wolper RA, Ottens AK, Kitlen JW, McClung SH, et al. Rapid discovery of putative protein biomarkers of traumatic brain injury by SDS-PAGE-capillary liquid chromatography-tandem mass spectrometry. J Neurotrauma. 2005;22:629–44.

Article  Google Scholar 

Kobeissy FH, Ottens AK, Zhang Z, Liu MC, Denslow ND, Dave JR, et al. Novel differential neuroproteomics analysis of traumatic brain injury in rats. Mol Cell Proteomics. 2006;5:1887–98.

CAS  Article  Google Scholar 

Hogan SR, Phan JH, Alvarado-Velez M, Wang MD, Bellamkonda RV, Fernández FM, et al. Discovery of lipidome alterations following traumatic brain injury via high-resolution metabolomics. J Proteome Res. 2018;17:2131–43.

CAS  Article  Google Scholar 

• Ottens AK, Stafflinger JE, Griffin HE, Kunz RD, Cifu DX, Niemeier JP. Post-acute brain injury urinary signature: a new resource for molecular diagnostics. J Neurotrauma. 2014;31:782–8. An innovative mass spectrometry approach examining the urinary proteome in TBI patients, leading to the development of sub profiles that correlated with magnitude of injury and functional outcomes.

Article  Google Scholar 

Millioni R, Tolin S, Puricelli L, Sbrignadello S, Fadini GP, Tessari P, et al. High abundance proteins depletion vs low abundance proteins enrichment: comparison of methods to reduce the plasma proteome complexity. Ho PL, editor. PLoS One. 2011;6:e19603.

Patel PD, Stafflinger JE, Marwitz JH, Niemeier JP, Ottens AK. Secreted peptides for diagnostic trajectory assessments in brain injury rehabilitation. Neurorehabil Neural Repair. 2021;35:169–84.

Article  Google Scholar 

• Abu Hamdeh S, Shevchenko G, Mi J, Musunuri S, Bergquist J, Marklund N. Proteomic differences between focal and diffuse traumatic brain injury in human brain tissue. Sci Rep. 2018;8:6807. This study compares biopsies of normal cortex to severe TBI cortex and contrasts the proteomes of cortical samples using label-free, mass spectroscopy.

Article  Google Scholar 

Ziebell JM, Morganti-Kossmann MC. Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics. 2010;7:22–30.

CAS  Article  Google Scholar 

Haqqani AS, Hutchison JS, Ward R, Stanimirovic DB. Biomarkers and diagnosis; protein biomarkers in serum of pediatric patients with severe traumatic brain injury identified by ICAT-LC-MS/MS. J Neurotrauma. 2007;24:54–74.

Article  Google Scholar 

Gao W, Lu C, Kochanek PM, Berger RP. Serum amyloid A is increased in children with abusive head trauma: a gel-based proteomic analysis. Pediatr Res. 2014;76:280–6.

CAS  Article  Google Scholar 

Carabias CS, Castaño-León AM, Blanca Navarro B, Panero I, Eiriz C, Gómez PA, et al. Serum amyloid A1 as a potential intracranial and extracranial clinical severity biomarker in traumatic brain injury. J Intensive Care Med. 2020;35:1180–95.

Article  Google Scholar 

Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012;9:555–66.

CAS  Article  Google Scholar 

Orwoll ES, Wiedrick J, Jacobs J, Baker ES, Piehowski P, Petyuk V, et al. High-throughput serum proteomics for the identification of protein biomarkers of mortality in older men. Aging Cell. 2018;17.

Shi T, Fillmore TL, Gao Y, Zhao R, He J, Schepmoes AA, et al. Long-gradient separations coupled with selected reaction monitoring for highly sensitive, large scale targeted protein quantification in a single analysis. Anal Chem. 2013;85:9196–203.

CAS  Article  Google Scholar 

Nie S, Shi T, Fillmore TL, Schepmoes AA, Brewer H, Gao Y, et al. Deep-dive targeted quantification for ultrasensitive analysis of proteins in nondepleted human blood plasma/serum and tissues. Anal Chem. 2017;89:9139–46.

CAS  Article  Google Scholar 

Hinson HE, Jacobs J, McWeeney S, Wachana A, Shi T, Martin K, et al. Antibody-free mass spectrometry identification of vascular integrity markers in major trauma. Neurotrauma Rep. 2021;2:322–9.

CAS  Article  Google Scholar 

Whitehouse DP, Monteiro M, Czeiter E, Vyvere TV, Valerio F, Ye Z, et al. Relationship of admission blood proteomic biomarkers levels to lesion type and lesion burden in traumatic brain injury: a CENTER-TBI study. eBioMedicine. 2022;75:103777.

Funk RS, Singh RK, Becker ML. Metabolomic profiling to identify molecular biomarkers of cellular response to methotrexate in vitro. Clin Transl Sci. 2020;13:137–46.

CAS  Article  Google Scholar 

Fiandaca MS, Mapstone M, Mahmoodi A, Gross T, Macciardi F, Cheema AK, et al. Plasma metabolomic biomarkers accurately classify acute mild traumatic brain injury from controls. Miller MW, editor. PLoS One. 2018;13:e0195318.

Fiandaca M, Gross T, Johnson T, Hu M, Evetts S, Wade-Martins R, et al. Potential metabolomic linkage in blood between Parkinson’s disease and traumatic brain injury. Metabolites. 2018;8:50.

Article  Google Scholar 

Orešič M, Posti JP, Kamstrup-Nielsen MH, Takala RSK, Lingsma HF, Mattila I, et al. Human serum metabolites associate with severity and patient outcomes in traumatic brain injury. EBioMedicine. 2016;12:118–26.

Article  Google Scholar 

• Wolahan SM, Lebby E, Mao HC, McArthur D, Real C, Vespa P, et al. Novel metabolomic comparison of arterial and jugular venous blood in severe adult traumatic brain injury patients and the impact of pentobarbital infusion. J Neurotrauma. 2019;36:212–21. Metabolomic study that compared simultaneously collected arterial and jugular venous metabolites using mass spectroscopy in acute TBI subjects vs age match controls and discovered unique metabolomic profiles in TBI patients and between the two blood sources.

Article  Google Scholar 

Thomas I, Dickens AM, Posti JP, Czeiter E, Duberg D, Sinioja T, et al. Serum metabolome associated with severity of acute traumatic brain injury. Nat Commun. 2022;13:2545.

CAS  Article  Google Scholar 

Loo O, R R. Top-down, bottom-up, and side-to-side proteomics with virtual 2-D gels. 2004 [cited 2022 Feb 7]; Available from: https://escholarship.org/uc/item/2hj540sc

Datta S, Malhotra L, Dickerson R, Chaffee S, Sen CK, Roy S. Laser capture microdissection: big data from small samples. Histol Histopathol. 2015;30:1255–69.

CAS  PubMed  PubMed Central  Google Scholar 

Wulf M, Barkovits-Boeddinghaus K, Sommer P, Schork K, Eisenacher M, Riederer P, et al. Laser microdissection-based protocol for the LC-MS/MS analysis of the proteomic profile of neuromelanin granules. J Vis Exp. 2021;

•• Perkel J. Proteomics at the single cell level. Nature. 2021;597:580–3. The emerging field of single-cell proteomics is reviewed here.

CAS  Article  Google Scholar 

Woo J, Williams SM, Markillie LM, Feng S, Tsai C-F, Aguilera-Vazquez V, et al. High-throughput and high-efficiency sample preparation for single-cell proteomics using a nested nanowell chip. Nat Commun. 2021;12:6246.

CAS  Article  Google Scholar 

Hollerbach AL, Conant CR, Nagy G, Ibrahim YM. Implementation of ion mobility spectrometry-based separations in structures for lossless ion manipulations (SLIM). Methods Mol Biol. 2022;2394:453–69.

Article  Google Scholar 

留言 (0)

沒有登入
gif