Diabetes-induced chronic heart failure is due to defects in calcium transporting and regulatory contractile proteins: cellular and molecular evidence

World Health Organization. (n.d.) Diabetes. Retrieved from https://www.who.int/health-topics/diabetes#tab=tab_1

American Diabetes Association (2015) Classification and diagnosis of diabetes. Diabetes Care 38(Supplement 1):S8–S16

Article  Google Scholar 

Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ (2010) Epidemiology of type 1 diabetes. Endocrinol Metab Clin North Am 39(3):481–497

PubMed  PubMed Central  Google Scholar 

Dabelea D, Mayer-Davis EJ, Saydah S, Imperatore G, Linder B, Divers J, Hamman RF (2014) SEARCH for Diabetes in Youth Study. Prevalence of type 1 and type 2 diabetes among children and adolescents from (2001) to 2009. JAMA 311(17):1778–1786

CAS  PubMed  PubMed Central  Article  Google Scholar 

CDC. (2019, May 30) Diabetes. Retrieved from Centers for Disease Control and Prevention: https://www.cdc.gov/diabetes/basics/type2.html

Herath H, Herath R, Wickremasinghe R (2017) Gestational diabetes mellitus and risk of type 2 diabetes 10 years after the index pregnancy in Sri Lankan women-a community based retrospective cohort study. PLoS One 12(6):e0179647

PubMed  PubMed Central  Article  CAS  Google Scholar 

Khan MA, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J (2020) Epidemiology of type 2 diabetes - global burden of disease and forecasted trends. J Epidemiol Global Health 10(1):107–111

Article  Google Scholar 

Deshpande AD, Harris-Hayes M, Schootman M (2008) Epidemiology of diabetes and diabetes-related complications. Phys Ther 88(11):1254–1264

PubMed  PubMed Central  Article  Google Scholar 

Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30(6):595–602

CAS  PubMed  Article  Google Scholar 

Newby DE, Grubb NR, Bradbury A (2014) Cardiovascular disease. In: Davidson S, Walker BR, Colledge NR, Ralston SH, Penman ID (eds) Davidson’s Principles & Practice of Medicine, 22nd edn. Elsevier, Edinburgh, pp 528–532

Google Scholar 

Cardiac Physiology (2013) In L Sherwood, Human Physiology: From Cells to Systems (8th ed. 305–340). Belmont, CA: Brooks/Cole

Sinnatamby CS (2011) Middle mediastinum and heart. In Last's Anatomy - Regional and Applied (12th ed. 197–207). Edinburgh: Elsevier

Cardiovascular disease (2009) In P Kumar, M Clark, Kumar & Clark's Clinical Medicine (7th ed. 681–688). Edinburgh: Elsevier

Widmaier EP, Raff H, Strang KT (2014) Cardiac muscle. In: Widmaier EP, Raff H, Strang KT (eds) Vander’s Human Physiology - The mechanisms of body function, 13th edn. McGraw-Hill, New York, pp 292–294

Google Scholar 

Klabunde RE (2017, December 20) Cardiac excitation-contraction coupling. Retrieved from Cardiovascular Physiology Concepts: https://www.cvphysiology.com/Cardiac%20Function/CF022

Miki T, Yuda S, Kouzu H, Miura T (2013) Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev 18(2):149–166

PubMed  Article  Google Scholar 

Belke DD, Dillmann WH (2004) Altered cardiac calcium handling in diabetes. Curr Hypertens Rep 6(6):424–429

PubMed  Article  Google Scholar 

Belke DD, Swanson EA, Dillmann WH (2004) Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes 53(12):3201–3208

CAS  PubMed  Article  Google Scholar 

Tian C, Alomar F, Moore CJ, Shao CH, Kutty S, Singh J, Bidasee KR (2014) Reactive carbonyl species and their roles in sarcoplasmic reticulum Ca2+ cycling defect in the diabetic heart. Heart Fail Rev 19(1):101–112

CAS  PubMed  PubMed Central  Article  Google Scholar 

Vander Jagt DL (2008) Methylglyoxal, diabetes mellitus and diabetic complications. Drug Metabol Drug Interact 23(1–2):93–124

CAS  PubMed  Google Scholar 

Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48(1):1–9

CAS  PubMed  Article  Google Scholar 

Jakubcakova V, Curzi ML, Flachskamm C, Hambsch B, Landgraf R, Kimura M (2013) The glycolytic metabolite methylglyoxal induces changes in vigilance by generating low-amplitude non-REM sleep. J Psychopharmacol 27(11):1070–1050

PubMed  Article  CAS  Google Scholar 

Schalkwijk CG, Stehouwer CD (2020) Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol Rev 100(1):407–461

CAS  PubMed  Article  Google Scholar 

Beisswenger PJ, Howell SK, Touchette AD, Lal S, Szwergold BS (1999) Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes 48(1):198–202

CAS  PubMed  Article  Google Scholar 

Shao CH, Capek HL, Patel KP, Wang M, Tang K, DeSouza C, Bidasee KR (2011) Carbonylation contributes to SERCA2a activity loss and diastolic dysfunction in a rat model of type 1 diabetes. Diabetes 60(3):947–959

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tian C, Shao CH, Moore CJ, Kutty S, Walseth T, DeSouza C, Bidasee KR (2011) Gain of function of cardiac ryanodine receptor in a rat model of type 1 diabetes. Cardiovasc Res 91(2):300–309

CAS  PubMed  PubMed Central  Article  Google Scholar 

Papadaki M, Holewinski RJ, Previs SB, Martin TG, Stachowski MJ, Li A, Kirk JA (2018) Diabetes with heart failure increases methylglyoxal modifications in the sarcomere, which inhibit function. JCI Insight 3(20):e121264

PubMed Central  Article  Google Scholar 

van der Pol A, van Gilst WH, Voors AA, van der Meer P (2019) Treating oxidative stress in heart failure: past, present and future. Eur J Heart Fail 21(4):425–435

PubMed  Article  Google Scholar 

Bugger H, Abel ED (2014) Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57(4):660–671

CAS  PubMed  PubMed Central  Article  Google Scholar 

Olukman M, Orhan CE, Celenk FG, Ulker S (2010) Apocynin restores endothelial dysfunction in streptozotocin diabetic rats through regulation of nitric oxide synthase and NADPH oxidase expressions. J Diabetes Complications 24(6):415–423

PubMed  Article  Google Scholar 

Cesselli D, Jakoniuk I, Barlucchi L, Beltrami AP, Hintze TH, Nadal-Ginard B, Anversa P (2001) Oxidative stress-mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circ Res 89(3):279–286

CAS  PubMed  Article  Google Scholar 

Takano H, Zou Y, Hasegawa H, Akazawa H, Nagai T, Komuro I (2003) Oxidative stress-induced signal transduction pathways in cardiac myocytes: involvement of ROS in heart diseases. Antioxid Redox Signal 5(6):789–794

CAS  PubMed  Article  Google Scholar 

King MK, Coker ML, Goldberg A, McElmurray JH, Gunasinghe HR, Mukherjee R, Spinale FG (2003) Selective matrix metalloproteinase inhibition with developing heart failure: effects on left ventricular function and structure. Circ Res 92(2):177–185

CAS  PubMed  Article  Google Scholar 

Jia G, Habibi J, DeMarco VG, Martinez-Lemus LA, Ma L, Whaley-Connell AT, Sowers JR (2015) Endothelial mineralocorticoid receptor deletion prevents diet-induced cardiac diastolic dysfunction in females. Hypertension 66(6):1159–1167

CAS  PubMed  Article  Google Scholar 

Pedreanez A, Mosquera J, Munoz N, Robalino J, Tene D (2022) Diabetes, heart damage, and angiotensin II. What is the relationship link between them? A minireview. Endocr Regul 56(1):55–65

PubMed  Article  Google Scholar 

Jia G, Hill MA, Sowers JR (2018) Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 122(4):624–638

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ramesh P, Yeo JL, Brady EM, McCann GP (2022) Role of inflammation in diabetic cardiomyopathy. Ther Adv Endocrinol Metab 13:20420188221083530

PubMed  PubMed Central  Article  Google Scholar 

Klein L, Hsia H (2014) Sudden cardiac death in heart failure. Cardiol Clin 32(1):135–144

PubMed  Article  Google Scholar 

Rougier JS, Abriel H (2016) Cardiac voltage-gated calcium channel macromolecular complexes. Biochim Biophys Acta 1863(7 Pt B):1806–1812

CAS  PubMed  Article  Google Scholar 

Shaw RM, Colecraft HM (2013) L-type calcium channel targeting and local signalling in cardiac myocytes. Cardiovasc Res 98(2):177–186

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bracken N, Howarth FC, Singh J (2006) Effects of streptozotocin-induced diabetes on contraction and calcium transport in rat ventricular cardiomyocytes. Ann N Y Acad Sci 1084:208–222

CAS  PubMed  Article  Google Scholar 

Hamouda NN, Sydorenko V, Qureshi MA, Alkaabi JM, Oz M, Howarth FC (2015) Dapagliflozin reduces the amplitude of shortening and Ca(2+) transient in ventricular myocytes from streptozotocin-induced diabetic rats. Mol Cell Biochem 400(1–2):57–68

CAS  PubMed  Article  Google Scholar 

Bracken NK, Woodall AJ, Howarth FC, Singh J (2004) Voltage-dependence of contraction in streptozotocin-induced diabetic myocytes. Mol Cell Biochem 261(1–2):235–243

CAS  PubMed  Article  Google Scholar 

Howarth FC, Qureshi MA, Hassan Z, Al Kury LT, Isaev D, Parekh K, Adeghate E (2011) Changing pattern of gene expression is associated with ventricular myocyte dysfunction and altered mechanisms of Ca2+ signalling in young type 2 Zucker diabetic fatty rat heart. Exp Physiol 96(3):325–337

CAS  PubMed  Article 

留言 (0)

沒有登入
gif