Micro–mesoporous kaolin-based zeolites as catalysts for glucose transformation into 5-hydroxymethylfurfural

Alver BE, Sakizci M, Yörükoğullari E (2010) Investigation of clinoptilolite rich natural zeolites from Turkey: a combined XRF, TG/DTG, DTA and DSC study. J Therm Anal Calorim 100:19–26. https://doi.org/10.1007/s10973-009-0118-0

CAS  Article  Google Scholar 

Breck DW (1974) Zeolitic molecular sieves: structure, chemistry and use. Wiley & Sons, New York

Google Scholar 

Choudhary V, Mushrif SH, Ho C, Anderko A, Nikolakis V, Marinkovic NS, Frenkel AI, Sandler SI, Vlachos DG (2013) Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media. J Am Chem Soc 135(10):3997–4006

CAS  Article  Google Scholar 

Chen N, Zhu Z, Ma H, Liao W, Lü H (2020) Catalytic upgrading of biomass-derived 5-hydroxymethylfurfural to biofuel 2,5-dimethylfuran over Beta zeolite supported non-noble Co catalyst. Mol Catal 486:110882. https://doi.org/10.1016/j.mcat.2020.110882

CAS  Article  Google Scholar 

Cui JL, Tan JJ, Deng TS, Cui XJ, Zhu YL, Li YW (2016) Conversion of carbohydrates to furfural via selective cleavage of the carbon-carbon bond: the cooperative effects of zeolite and solvent. Green Chem 18:1619–1624. https://doi.org/10.1039/C5GC01948F

CAS  Article  Google Scholar 

Cui M, Wu ZJ, Huang RL, Qi W, Su RX, He ZM (2018) Integrating chromium-based ceramic and acid catalysis to convert glucose into 5-hydroxymethylfurfural. Renew Energy 125:327–333. https://doi.org/10.1016/j.renene.2018.02.085

CAS  Article  Google Scholar 

Esteban J, Yustos P, Ladero M (2018) Catalytic Processes from biomass-derived hexoses and pentoses: a recent literature overview. Catalysts 8:637–678. https://doi.org/10.3390/catal8120637

CAS  Article  Google Scholar 

Garber JD, Jones RE (1960) Production of 5-hydroxymethylfurfural: pat. application US2929823A: C07D307/46, N 2929823A; 26.11.1956; Publ. 22.03.1960

Karge HG (1998) Characterization by infrared spectroscopy. Micropor Mesopor Mater 22:547–549. https://doi.org/10.1016/S1387-1811(98)80021-8

CAS  Article  Google Scholar 

Kläusli T (2014) AVA Biochem: commercialising renewable platform chemical 5-HMF. Green Process Synth 3:235–236

Article  Google Scholar 

Kondo JN, Nishitani R, Yoda E, Yokoi T, Tatsumi T, Domen KA (2010) Comparative IR characterization of acidic sites on HY zeolite by pyridine and CO probes with silica–alumina and γ-alumina references. Phys Chem Chem Phys 12:11576–11586

CAS  Article  Google Scholar 

Król M, Koleżyński A, Mozgawa W (2021) Vibrational spectra of zeolite Y as a function of ion exchange. Molecules 26(2):342. https://doi.org/10.3390/molecules26020342

CAS  Article  Google Scholar 

Kuster BFM (1990) 5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture. Starch - Stärke 42:314–321

CAS  Article  Google Scholar 

Lanzafame P, Barbera K, Papanikolaou G, Perathoner S, Centi G, Migliori M, Catizzone E, Giordano G (2018) Comparison of H+ and NH4+ forms of zeolites as acid catalysts for HMF etherification. Catal Today 304:97–102. https://doi.org/10.1016/j.cattod.2017.08.004

CAS  Article  Google Scholar 

Li Y, Meng X, Luo R, Zhou H, Lu S, Yu S, Bai P, Guo X, Lyu J (2022) Aluminum/Tin-doped UiO-66 as Lewis acid catalysts for enhanced glucose isomerization to fructose. Appl Catal a: Gen 632:118501. https://doi.org/10.1016/j.apcata.2022.118501

CAS  Article  Google Scholar 

Liu Y, Li Z, Yang Y, Houb Y, Wei Z (2014) A novel route towards high yield 5-hydroxymethylfurfural from fructose catalyzed by a mixture of Lewis and Brönsted acids. RSC Adv 4:42035–42038. https://doi.org/10.1039/C4RA04906C

CAS  Article  Google Scholar 

Lukyanov DM, Vazhnova T, Cherkasov N, Casci JL, Birtill JJ (2014) Insights into Brønsted acid sites in the zeolite mordenite. J Phys Chem C 118(41):23918–23929. https://doi.org/10.1021/jp5086334

CAS  Article  Google Scholar 

Montgomery DC (2012) Design and analysis of experiments, 8th edn. John Wiley & Sons Inc

Google Scholar 

Nibou D, Amokrane S, Mekatel H, Lebaili N (2009) Elaboration and characterization of solid materials of types zeolite NaA and Faujasite NaY echanged by zinc metallic ions Zn2+. Phys Procedia 2:1433–1440

CAS  Article  Google Scholar 

Pande A, Niphadkar P, Pandare K, Bokade V (2018) Acid modified H-USY zeolite for efficient catalytic transformation of fructose to 5-hydroxymethyl furfural (biofuel precursor) in methyl isobutyl ketone−water biphasic system. Energy Fuels 32:3783–3791. https://doi.org/10.1021/acs.energyfuels.7b03684

CAS  Article  Google Scholar 

Parveen F, Upadhyayula S (2017) Efficient conversion of glucose to HMF using organocatalysts with dual acidic and basic functionalities—a mechanistic and experimental study. Fuel Process Technol 162:30–36. https://doi.org/10.1016/j.fuproc.2017.03.021

CAS  Article  Google Scholar 

Patrylak L (1999) Chemisorption of the Lewis Bases on zeolites – a new interpretation of the results. Adsorp Sci Technol 17(2):115–123. https://doi.org/10.1177/026361749901700205`

CAS  Article  Google Scholar 

Patrylak L (2000) Chemisorption and the distribution of acid Y zeolite cumene cracking products. Adsorp Sci Technol 18(5):399–408. https://doi.org/10.1260/0263617001493512

CAS  Article  Google Scholar 

Patrylak KI, Patrylak LK, Taranookha OM (2000) Oscillatory adsorption as the determinant of the fluctuating behaviour of different heterogeneous systems. Adsorp Sci Technol 18:15–25. https://doi.org/10.1260/0263617001493242

CAS  Article  Google Scholar 

Patrylak L, Likhnyovskyi R, Vypyraylenko V, Leboda R, Skubiszewska-Zięba J, Patrylak K (2001) Adsorption properties of zeolite-containing microspheres and FCC catalysts based on Ukrainian Kaolin. Adsorp Sci Technol 19:525–540. https://doi.org/10.1260/0263617011494376

CAS  Article  Google Scholar 

Patrylak LK, Yakovenko AV (2021) Alkylation of isobutane with butenes under microcatalytic conditions in pulse regime. Voprosy Khimii i Khimicheskoi Tekhnologii. 1:55–61. https://doi.org/10.32434/0321-4095-2021-134-1-55-61

CAS  Article  Google Scholar 

Patrylak LK, Pertko OP, Povazhnyi VA, Yakovenko AV, Konovalov SV (2021a) Evaluation of nickel-containing zeolites in the catalytic transformation of glucose in an aqueous medium. Appl Nanosci 12:869–882. https://doi.org/10.1007/s13204-021-01771-1

CAS  Article  Google Scholar 

Patrylak L, Konovalov S, Pertko O, Yakovenko A, Povazhnyi V, Melnychuk O (2021b) Obtaining glucose-based 5-hydroxymethylfurfural on large-pore zeolites. Eastern-Eur J Enterprise Technol 2(110):38–44

Article  Google Scholar 

Phung TK, Busca G (2015) On the Lewis acidity of protonic zeolites. Appl Catal a: Gen 504:151–157. https://doi.org/10.1016/j.apcata.2014.11.031

CAS  Article  Google Scholar 

Pienkoss F, Ochoa-Hernandez C, Theyssen N, Leitner W (2018) Kaolin: a natural low-cost material as catalyst for isomerization of glucose to fructose. ACS Sustain Chem Eng 6:8782–8789. https://doi.org/10.1021/acssuschemeng.8b01151

CAS  Article  Google Scholar 

Rouqerol F, Rouqerol J, Sing K (1999) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, San Diego

Google Scholar 

Saravanamurugan S, Riisager A, Taarning E, Meier S (2016) Combined function of bronsted and lewis acidity in the zeolite-catalyzed isomerization of glucose to fructose in alcohols. ChemCatChem 8:3107–3111. https://doi.org/10.1002/cctc.201600783

CAS  Article  Google Scholar 

Somerset VS, Petrik LF, White RA, Klink MJ, Key D, Iwuoha E (2004) The use of X-ray fluorescence (XRF) analysis in predicting the alkaline hydrothermal conversion of fly ash precipitates into zeolites. Talanta 64(1):109–114. https://doi.org/10.1016/j.talanta.2003.10.059

CAS  Article  Google Scholar 

Swift D, Nguyen H, Anderko A, Nikolakis V, Vlachos DG (2015) Tandem Lewis/Brønsted homogeneous acid catalysis: conversion of glucose to 5-hydoxymethylfurfural in an aqueous chromium(III) chloride and hydrochloric acid solution. Green Chem 7:4725–4735. https://doi.org/10.1039/c5gc01257k

Article  Google Scholar 

Tosi I, Riisager A, Taarning E, Jensen PR, Meier S (2018) Kinetic analysis of hexose conversion to methyl lactate by Sn-Beta: effects of substrate masking and of water. Catal Sci Technol 8:2137–2145. https://doi.org/10.1039/C8CY00335A

CAS  Article  Google Scholar 

Treacy MMJ and Higgins JB (2001) Collection of Simulated XRD Powder Patterns for Zeolites: 4th Revised Edition. ELSEVIER Amsterdam - London - New York - Oxford - Paris - Shannon – Tokyo

Van Bokhoven JA, Lee T-L, Drakopoulos M, Lamberti C, Thieß S, Zegenhagen J (2008) Determining the aluminium occupancy on the active T-sites in zeolites using X-ray standing waves. Nat Mater 7:551–555. https://doi.org/10.1038/nmat2220

CAS  Article  Google Scholar 

Van Putten R-J, Van der Waal JC, De Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597. https://doi.org/10.1021/cr300182k

CAS  Article  Google Scholar 

Wei WQ, Wu SB (2018) Experimental and kinetic study of glucose conversion to levulinic acid in aqueous medium over Cr/HZSM-5 catalyst. Fuel 225:311–321. https://doi.org/10.1016/j.fuel.2018.03.120

CAS  Article  Google Scholar 

Weitkamp J, Hunger M (2007) Acid and base catalysis on zeolites. In: Cejka J, Van Bekkum H, Corma A, Schueth F (eds) Introduction to zeolite molecular sieves. Elsevier, pp 787–836

Google Scholar 

Yakovenko AV, Patrylak LK, Manza IA, Patrylak KI (2000) Study of the acidity of zeolite alkylation catalysts by temperature programmed ammonia desorption. Theor Exp Chem 36:228–230. https://doi.org/10.1007/BF02522757

Article  Google Scholar 

Zhang LX, Xi GY, Chen Z, Jiang D, Yu HB, Wang XC (2017) Highly selective conversion of glucose into furfural over modified zeolites. Chem Eng J 307:868–876. https://doi.org/10.1016/j.cej.2016.09.001

CAS  Article  Google Scholar 

Zhang X, Hewetson BB, Mosier NS (2015) Kinetics of maleic acid and aluminum chloride catalyzed dehydration and degradation of glucose. Energy Fuels 29:2387–2393. https://doi.org/10.1021/ef502461s

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif