Structure, reactivity and catalytic properties of manganese-hydride amidate complexes

Schrock, R. R. & Osborn, J. A. Rhodium catalysts for the homogeneous hydrogenation of ketones. J. Chem. Soc. D, 567–568 (1970).

Clapham, S. E., Hadzovic, A. & Morris, R. H. Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes. Coord. Chem. Rev. 248, 2201–2237 (2004).

CAS  Article  Google Scholar 

Dub, P. A., Scott, B. L. & Gordon, J. C. Why does alkylation of the N–H functionality within M/NH bifunctional Noyori-type catalysts lead to turnover? J. Am. Chem. Soc. 139, 1245–1260 (2017).

CAS  Article  PubMed  Google Scholar 

Noyori, R. & Ohkuma, T. Asymmetric catalysis by architectural and functional molecular engineering: practical chemo- and stereoselective hydrogenation of ketones. Angew. Chem. Int. Ed. 40, 40–73 (2001).

CAS  Article  Google Scholar 

Ohkuma, T., Ooka, H., Hashiguchi, S., Ikariya, T. & Noyori, R. Practical enantioselective hydrogenation of aromatic ketones. J. Am. Chem. Soc. 117, 2675–2676 (1995).

CAS  Article  Google Scholar 

Doucet, H. et al. Trans-[RuCl2(phosphane)2(1,2-diamine)] and chiral trans-[RuCl2(diphosphane)(1,2-diamine)]: shelf-stable precatalysts for the rapid, productive, and stereoselective hydrogenation of ketones. Angew. Chem. Int. Ed. 37, 1703–1707 (1998).

CAS  Article  Google Scholar 

Ohkuma, T. et al. Asymmetric hydrogenation of alkenyl, cyclopropyl, and aryl ketones. RuCl2(xylbinap)(1,2-diamine) as a precatalyst exhibiting a wide scope. J. Am. Chem. Soc. 120, 13529–13530 (1998).

CAS  Article  Google Scholar 

Ohkuma, T., Ishii, D., Takeno, H. & Noyori, R. Asymmetric hydrogenation of amino ketones using chiral RuCl2(diphophine)(1,2-diamine) complexes. J. Am. Chem. Soc. 122, 6510–6511 (2000).

CAS  Article  Google Scholar 

Ohkuma, T. et al. Trans-RuH(η-BH4)(binap)(1,2-diamine): a catalyst for asymmetric hydrogenation of simple ketones under base-free conditions. J. Am. Chem. Soc. 124, 6508–6509 (2002).

CAS  Article  PubMed  Google Scholar 

Balaraman, E., Gunanathan, C., Zhang, J., Shimon, L. J. W. & Milstein, D. Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nat. Chem. 3, 609–614 (2011).

CAS  Article  PubMed  Google Scholar 

Xie, J.-H., Liu, X.-Y., Xie, J.-B., Wang, L.-X. & Zhou, Q.-L. An additional coordination group leads to extremely efficient chiral iridium catalysts for asymmetric hydrogenation of ketones. Angew. Chem. Int. Ed. 50, 7329–7332 (2011).

CAS  Article  Google Scholar 

Zuo, W., Lough, A. J., Li, Y. F. & Morris, R. H. Amine(imine)diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines. Science 342, 1080–1083 (2013).

CAS  Article  PubMed  Google Scholar 

Pan, H.-J. et al. A catalytically active [Mn]-hydrogenase incorporating a non-native metal cofactor. Nat. Chem. 11, 669–675 (2019).

CAS  PubMed Central  Article  PubMed  Google Scholar 

Ikariya, T. & Gridnev, I. D. Bifunctional transition metal-based molecular catalysts for asymmetric C–C and C–N bond formation. Chem. Rec. 9, 106–123 (2009).

CAS  Article  PubMed  Google Scholar 

Zhao, B., Han, Z. & Ding, K. The N–H Functional group in organometallic catalysis. Angew. Chem. Int. Ed. 52, 4744–4788 (2013).

CAS  Article  Google Scholar 

Khusnutdinova, J. R. & Milstein, D. Metal–ligand cooperation. Angew. Chem. Int. Ed. 54, 12236–12273 (2015).

CAS  Article  Google Scholar 

Haack, K.-J., Hashiguchi, S., Fujii, A., Ikariya, T. & Noyori, R. The catalyst precursor, catalyst, and intermediate in the RuII-promoted asymmetric hydrogen transfer between alcohols and ketones. Angew. Chem. Int. Ed. Engl. 36, 285–288 (1997).

CAS  Article  Google Scholar 

Yamakawa, M., Ito, H. & Noyori, R. The metal–ligand bifunctional catalysis: a theoretical study on the ruthenium(II)-catalyzed hydrogen transfer between alcohols and carbonyl compounds. J. Am. Chem. Soc. 122, 1466–1478 (2000).

CAS  Article  Google Scholar 

Abdur-Rashid, K., Faatz, M., Lough, A. J. & Morris, R. H. Catalytic cycle for the asymmetric hydrogenation of prochiral ketones to chiral alcohols: direct hydride and proton transfer from chiral catalysts trans-Ru(H)2(diphosphine)(diamine) to ketones and direct addition of dihydrogen to the resulting hydridoamido complexes. J. Am. Chem. Soc. 123, 7473–7474 (2001).

CAS  Article  PubMed  Google Scholar 

Abdur-Rashid, K. et al. Mechanism of the hydrogenation of ketones catalyzed by trans-dihydrido(diamine)ruthenium(II) complexes. J. Am. Chem. Soc. 124, 15104–15118 (2002).

CAS  Article  PubMed  Google Scholar 

Sandoval, C. A., Ohkuma, T., Muñiz, K. & Noyori, R. Mechanism of asymmetric hydrogenation of ketones catalyzed by BINAP/1,2-Diamine–ruthenium(II) complexes. J. Am. Chem. Soc. 125, 13490–13503 (2003).

CAS  Article  PubMed  Google Scholar 

Abbel, R. et al. A succession of isomers of ruthenium dihydride complexes. Which one is the ketone hydrogenation catalyst? J. Am. Chem. Soc. 127, 1870–1882 (2005).

CAS  Article  PubMed  Google Scholar 

Hamilton, R. J., Leong, C. G., Bigam, G., Miskolzie, M. & Bergens, S. H. A ruthenium–dihydrogen putative intermediate in ketone hydrogenation. J. Am. Chem. Soc. 127, 4152–4153 (2005).

CAS  Article  PubMed  Google Scholar 

Hamilton, R. J. & Bergens, S. H. An unexpected possible role of base in asymmetric catalytic hydrogenations of ketones. Synthesis and characterization of several key catalytic intermediates. J. Am. Chem. Soc. 128, 13700–13701 (2006).

CAS  Article  PubMed  Google Scholar 

Hamilton, R. J. & Bergens, S. H. Direct observations of the metal–ligand bifunctional addition step in an enantioselective ketone hydrogenation. J. Am. Chem. Soc. 130, 11979–11987 (2008).

CAS  Article  PubMed  Google Scholar 

Takebayashi, S., Dabral, N., Miskolzie, M. & Bergens, S. H. Experimental investigations of a partial Ru–O Bond during the metal–ligand bifunctional addition in Noyori-type enantioselective ketone hydrogenation. J. Am. Chem. Soc. 133, 9666–9669 (2011).

CAS  Article  PubMed  Google Scholar 

Dub, P. A., Henson, N. J., Martin, R. L. & Gordon, J. C. Unravelling the mechanism of the asymmetric hydrogenation of acetophenone by [RuX2(diphosphine)(1,2-diamine)] catalysts. J. Am. Chem. Soc. 136, 3505–3521 (2014).

CAS  Article  PubMed  Google Scholar 

Hasanayn, F. & Morris, R. H. Symmetry aspects of H2 splitting by five-coordinate d6 ruthenium amides, and calculations on acetophenone hydrogenation, ruthenium alkoxide formation, and subsequent hydrogenolysis in a model trans-Ru(H)2(diamine)(diphosphine) system. Inorg. Chem. 51, 10808–10818 (2012).

CAS  Article  PubMed  Google Scholar 

Dub, P. A. & Ikariya, T. Quantum chemical calculations with the inclusion of nonspecific and specific solvation: asymmetric transfer hydrogenation with bifunctional ruthenium catalysts. J. Am. Chem. Soc. 135, 2604–2619 (2013).

CAS  Article  PubMed  Google Scholar 

Dub, P. A. & Gordon, J. C. The mechanism of enantioselective ketone reduction with Noyori and Noyori–Ikariya bifunctional catalysts. Dalton Trans. 45, 6756–6781 (2016).

CAS  Article  PubMed  Google Scholar 

Dub, P. A. & Gordon, J. C. Metal–ligand bifunctional catalysis: the ‘accepted’ mechanism, the issue of concertedness, and the function of the ligand in catalytic cycles involving hydrogen atoms. ACS Catal. 7, 6635–6655 (2017).

CAS  Article  Google Scholar 

Dub, P. A. & Gordon, J. C. The role of the metal-bound N–H functionality in Noyori-type molecular catalysts. Nat. Rev. Chem. 2, 396–408 (2018).

CAS  Article  Google Scholar 

Hartmann, R. & Chen, P. Noyori’s hydrogenation catalyst needs a Lewis acid cocatalyst for high activity. Angew. Chem. Int. Ed. 40, 3581–3585 (2001).

CAS  Article  Google Scholar 

Hartmann, R. & Chen, P. Numerical modeling of differential kinetics in the asymmetric hydrogenation of acetophenone by Noyori’s catalyst. Adv. Synth. Catal. 345, 1353–1359 (2003).

CAS  Article  Google Scholar 

John, J. M., Takebayashi, S., Dabral, N., Miskolzie, M. & Bergens, S. H. Base-catalyzed bifunctional addition to amides and imides at low temperature. A new pathway for carbonyl hydrogenation. J. Am. Chem. Soc. 135, 8578–8584 (2013).

CAS  Article  PubMed  Google Scholar 

Nakane, S., Yamamura, T., Manna, S. K., Tanaka, S. & Kitamura, M. Mechanistic study of the Ru-catalyzed asymmetric hydrogenation of nonchelatable and chelatable tert-alkyl ketones using the linear tridentate sp3P/sp3NH/sp2N-combined ligand PN(H)N: RuNH- and RuNK-involved dual catalytic cycle. ACS Catal. 8, 11059–11075 (2018).

CAS  Article  Google Scholar 

Dub, P. A. Alkali metal alkoxides in Noyori-type hydrogenations. Eur. J. Inorg. Chem. 2021, 4884–4889 (2021).

CAS  Article  Google Scholar 

Liu, C., van Putten, R., Kulyaev, P. O., Filonenko, G. A. & Pidko, E. A. Computational insights into the catalytic role of the base promoters in ester hydrogenation with homogeneous non-pincer-based Mn–P,N catalyst. J. Catal. 363, 136–143 (2018).

CAS  Article  Google Scholar 

Cui, C.-X. et al. Mechanism of Ir-catalyzed hydrogenation: a theoretical view. Coord. Chem. Rev. 412, 213251 (2020).

CAS  Article  Google Scholar 

Wang, Y., Wang, M., Li, Y. & Liu, Q. Homogeneous manganese-catalyzed hydrogenation and dehydrogenation reactions. Chem 7, 1180–1223 (2021).

CAS  Article  Google Scholar 

Fu, S., Shao, Z., Wang, Y. & Liu, Q. Manganese-catalyzed upgrading of ethanol into 1-butanol. J. Am. Chem. Soc. 139, 11941–11948 (2017).

CAS 

留言 (0)

沒有登入
gif