Actinopolymorphols E and F, pyrazine alkaloids from a marine sediment-derived bacterium Streptomyces sp

Sun W, Wu W, Liu X, Zaleta-Pinet DA, Clark BR. Bioactive compounds isolated from marine-derived microbes in China: 2009-18. Mar Drugs. 2019;17.6:339.

Article  Google Scholar 

Knight V, Sanglier JJ, DiTullio D, Braccili S, Bonner P, Waters J, Zhang L. Diversifying microbial natural products for drug discovery. Appl Microbiol Biotechnol. 2003;62.5:446–58.

Article  Google Scholar 

Khan ST, Komaki H, Motohashi K, Kozone I, Mukai A, Takagi M, Shin-ya K. Streptomyces associated with a marine sponge Haliclona sp.; biosynthetic genes for secondary metabolites and products. Environ Microbiol. 2011;13:391–403.

CAS  Article  Google Scholar 

Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep. 2021;38:362–413.

CAS  Article  Google Scholar 

Mincer TJ, Jensen PR, Kauffman CA, Fenical W. Appl Environ Microbiol. 2002;68:5005–11.

CAS  Article  Google Scholar 

Anandan R, Dharumadurai D, Manogaran GP. An introduction to actinobacteria. Actinobacteria—Basic Biotechnol Appl. 2016;11:3–37.

Google Scholar 

Ōmura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M. Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. PNAS . 2001;98:12215–20.

Article  Google Scholar 

Quinn GA, Banat AM, Abdelhameed AM, Banat IM. Streptomyces from traditional medicine: source of new innovations in antibiotic discovery. J Med Microbiol. 2020;69:1040–48.

CAS  Article  Google Scholar 

Ayswaria R, Vasu V, Krishna R. Diverse endophytic Streptomyces species with dynamic metabolites and their meritorious applications: a critical review. Crit Rev Microbiol. 2020;46:750–8.

CAS  Article  Google Scholar 

Lee L-H, Goh B-H, Chan K-G. Edoitorial: Antinobacteria: prolific producers of bioactive metabolites. Front Microbiol. 2020;11:1612.

Article  Google Scholar 

Jose PA, Maharshi A, Jha B. Actinobacteria in natural products research: progress and prospects. Microbiol Res. 2021;246:126708.

CAS  Article  Google Scholar 

Wu XA, Zhao YM, Yu NJ. A novel analgesic pyrazine derivative from the leaves of Croton tiglium L. J Asian Nat Prod Res. 2007;9.5:437–41.

Article  Google Scholar 

Durán R, Zubía E, Ortega MJ, Naranjo S, Salvá J. Novel alkaloids from the red ascidian Botryllus leachi. Tetrahedron. 1999;55:13225–32.

Article  Google Scholar 

Wyatt MA, Magarvey NA. Optimizing dimodular nonribosomal peptide synthetases and natural dipeptides in an Escherichia coli heterologous host. Biochem Cell Biol. 2013;91:203–8.

CAS  Article  Google Scholar 

Wyatt MA, Mok MCY, Junop M, Magarvey NA. Heterologous expression and structural characterisation of a pyrazinone natural product assembly line. Chem Bio Chem. 2012;13:2048–15.

Article  Google Scholar 

Romero CA, Grkovic T, Han J, Zhang L, French JRJ, Kurtbӧke DI, Quinn RJ. NMR fingerprints, an integrated approach to uncover the unique components of the drug-like natural product metabolome of termite gut- associated Streptomyces species. RSC Adv. 2015;5:104524–34.

CAS  Article  Google Scholar 

Ohta A, Okuwaki Y, Komaru T, Hisatome M, Yoshida Y, Aizawa J, Nakano Y, Shibata H, Miyazaki T, Watanabe T. Catalytic hydrogenation of 2,5-dialkylpyrazines and 3,6-dialkyl-2-hydroxypyarazines. Heterocycles. 1987;26:2691–701.

CAS  Article  Google Scholar 

Rojas N, Grillasca Y, Acosta A, Audelo I, Mora GG. A new method for the synthesis of symmetrical disubstituted pyrazines. J Heterocycl Chem. 2013;50:982–4.

CAS  Article  Google Scholar 

Ohta A, Akita Y, Nakane Y. Conversion of 2,5-diphenyl- and 2,5-dibenzyl-pyrazines to 2,5-diketopiperazines. Chem Pharm Bull. 1979;27:2980–7.

CAS  Article  Google Scholar 

Daw P, Kumar A, Espinoas-Jalapa NA, Diskin-Posner Y, Ben-David Y, Milstein D. ACS Catal. 2018;8:7737–41.

Article  Google Scholar 

Murray KE, Shipton J, Whitfield FB. 2-Methoxypyrazines and the flavour of green peas (Pisum sativum). Chem Ind. 1970;4:897–8.

Google Scholar 

Chen T-B, Reineccius GA, Bjorklund JA, Leete E. Biosynthesis of 2-methoxy-3-isopropylpyrazine in Pseudomonas perolens. J Agric Food Chem. 1991;39:1009–12.

Article  Google Scholar 

MacDonald JC. Biosynthesis of pulcherriminic acid. Biochem J. 1965;96:533–8.

CAS  Article  Google Scholar 

MacDonald JC. Biosynthesis of hydroxyaspergillic acid. J Biol Chem. 1962;237:1977–81.

CAS  Article  Google Scholar 

Maha A, Rukachaisirikul V, Saithong S, Phongpaichit S, Poonsuwan W, Sakayaroj J, Hannongbua S. Terezine derivatives from the fungus Phoma herbarum PSU-H256. Phytochemistry. 2016;122:223–9.

CAS  Article  Google Scholar 

Mortzfeld FB, Hashem C, Vranková K, Winkler M, Rudroff F. Pyrazines: synthesis and industrial application of these valuable flavor and fragrance compounds. Biotechnol J. 2020;15:2000064.

CAS  Article  Google Scholar 

Shimoda M, Nakada Y, Nakashima M, Osajima Y. Quantitative comparison of volatile flavor compounds in deep-roasted and light-roasted sesame seed oil. J Agric Food Chem. 1997;45:3193–6.

CAS  Article  Google Scholar 

Opletalová V, Hartl J, Patel A, Palat K Jr, Buchta V. Ring substituted 3-phenyl-1-(2-pyrazinyl)−2-propen-1-ones as potential photosynthesis-inhibiting, antifungal and antimycobacterial agents. ΙL Farm. 2002;57:135–44.

Article  Google Scholar 

Huang S-X, Powell E, Rajski SR, Zhao L-X, Jiang C-L, Duan Y, Xu W, Shen B. Discovery and total synthesis of a new estrogen receptor heterodimerizing actinopolymorphol A from Actinoppolymorpha rutilus. Org Lett. 2010;12:3525–7.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif