Bone-Muscle Crosstalk: Musculoskeletal Complications of Chemotherapy

Schirrmacher V. From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int J Oncol. 2019;54(2):407–19. https://doi.org/10.3892/ijo.2018.4661.

CAS  Article  PubMed  Google Scholar 

Oun R, Moussa YE, Wheate NJ. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 2018;47(19):6645–6653. https://doi.org/10.1039/c8dt00838h

• Barreto R, Waning DL, Gao H, Liu Y, Zimmers TA, Bonetto A. Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs. Oncotarget. 2016;7(28):43442-60. https://doi.org/10.18632/oncotarget.9779. Recent study showing that chemotherapy did not increase proteasomal activity UPS in mice.

Luctkar-Flude M, Groll D, Woodend K, Tranmer J. Fatigue and physical activity in older patients with cancer: a six-month follow-up study. Oncol Nurs Forum. 2009;36(2):194–202. https://doi.org/10.1188/09.ONF.194-202.

Article  PubMed  Google Scholar 

Wissing MD. Chemotherapy- and irradiation-induced bone loss in adults with solid tumors. Curr Osteoporos Rep. 2015;13(3):140–5. https://doi.org/10.1007/s11914-015-0266-z.

Article  PubMed  PubMed Central  Google Scholar 

Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev. 2009;89:381–410. https://doi.org/10.1152/physrev.00016.2008.

CAS  Article  PubMed  Google Scholar 

Fearon KC, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 2012;16(2):153–66. https://doi.org/10.1016/j.cmet.2012.06.011.

CAS  Article  PubMed  Google Scholar 

Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH. Cancer-associated cachexia. Nat Rev Dis Primers. 2018;4:17105. https://doi.org/10.1038/nrdp.2017.105.

Article  PubMed  Google Scholar 

Prado CM, Antoun S, Sawyer MB, Baracos VE. Two faces of drug therapy in cancer: drug-related lean tissue loss and its adverse consequences to survival and toxicity. Curr Opin Clin Nutr Metab Care. 2011;14:250–4. https://doi.org/10.1097/MCO.0b013e3283455d45.

CAS  Article  PubMed  Google Scholar 

Jung H-W, Kim JW, Kim J-Y, Kim S-W, Yang HK, Lee JW, Lee KW, Kim DW, Kang SB, Kim KI, Kim CH, Kim JH. Effect of muscle mass on toxicity and survival in patients with colon cancer undergoing adjuvant chemotherapy. Supportive Care in Cancer : Official Journal of the Multinational Association of Supportive Care in Cancer. 2015;23:687–94. https://doi.org/10.1007/s00520-014-2418-6.

Article  Google Scholar 

van den Boogaard WMC, Komninos DSJ, Vermeij WP. Chemotherapy side-effects: not all DNA damage is equal. Cancers (Basel). 2022;14(3). https://doi.org/10.3390/cancers14030627.

Pomeroy AE, Schmidt EV, Sorger PK, Palmer AC. Drug independence and the curability of cancer by combination chemotherapy. Trends Cancer. 2022. https://doi.org/10.1016/j.trecan.2022.06.009.

Bax BD, Murshudov G, Maxwell A, Germe T. DNA topoisomerase inhibitors: trapping a DNA-cleaving machine in motion. J Mol Biol. 2019;431(18):3427–49. https://doi.org/10.1016/j.jmb.2019.07.008.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Moreira-Pais A, Ferreira R, Gil da Costa R. Platinum-induced muscle wasting in cancer chemotherapy: mechanisms and potential targets for therapeutic intervention. Life Sci. 2018;208:1-9. https://doi.org/10.1016/j.lfs.2018.07.010.

Leitsch D. A review on metronidazole: an old warhorse in antimicrobial chemotherapy. Parasitology. 2019;146(9):1167–78. https://doi.org/10.1017/S0031182017002025.

CAS  Article  PubMed  Google Scholar 

Omar F, Tareq AM, Alqahtani AM, Dhama K, Sayeed MA, Emran TB, et al. Plant-based indole alkaloids: a comprehensive overview from a pharmacological perspective. Molecules. 2021;26(8). https://doi.org/10.3390/molecules26082297.

Sun Y, Liu Y, Ma X, Hu H. The influence of cell cycle regulation on chemotherapy. Int J Mol Sci. 2021;22(13). https://doi.org/10.3390/ijms22136923.

Corn PG, Agarwal N, Araujo JC, Sonpavde G. Taxane-based combination therapies for metastatic prostate cancer. Eur Urol Focus. 2019;5(3):369–80. https://doi.org/10.1016/j.euf.2017.11.009.

Article  PubMed  Google Scholar 

Perkins MS, Louw-du Toit R, Africander D. Hormone therapy and breast cancer: emerging steroid receptor mechanisms. J Mol Endocrinol. 2018;61(4):R133–R60. https://doi.org/10.1530/JME-18-0094.

CAS  Article  PubMed  Google Scholar 

Miura Y, Horie S. The role of hormone therapy and chemotherapy in oligometastatic prostate cancer. ESMO Open. 2019;4(Suppl 1):e000471. https://doi.org/10.1136/esmoopen-2018-000471.

Article  PubMed  PubMed Central  Google Scholar 

Moseley KF, Naidoo J, Bingham CO, Carducci MA, Forde PM, Gibney GT, Lipson EJ, Shah AA, Sharfman WH, Cappelli LC. Immune-related adverse events with immune checkpoint inhibitors affecting the skeleton: a seminal case series. J Immunother Cancer. 2018;6(1):104. https://doi.org/10.1186/s40425-018-0417-8.

Article  PubMed  PubMed Central  Google Scholar 

Shelly S, Triplett JD, Pinto MV, Milone M, Diehn FE, Zekeridou A, et al. Immune checkpoint inhibitor-associated myopathy: a clinicoseropathologically distinct myopathy. Brain Commun. 2020;2(2):fcaa181. https://doi.org/10.1093/braincomms/fcaa181.

Pundole X, Sarangdhar M, Suarez-Almazor ME. Rheumatic and musculoskeletal adverse events associated with immune checkpoint inhibitors: data mining of the US Food and Drug Administration adverse event reporting system. Ann Rheum Dis. 2018;77:147–8. https://doi.org/10.1136/annrheumdis-2018-eular.6113.

Article  Google Scholar 

Moreira A, Loquai C, Pfohler C, Kahler KC, Knauss S, Heppt MV, et al. Myositis and neuromuscular side-effects induced by immune checkpoint inhibitors. Eur J Cancer. 2019;106:12–23. https://doi.org/10.1016/j.ejca.2018.09.033.

CAS  Article  PubMed  Google Scholar 

Wang K, Gu Y, Liao Y, Bang S, Donnelly CR, Chen O, Tao X, Mirando AJ, Hilton MJ, Ji RR. PD-1 blockade inhibits osteoclast formation and murine bone cancer pain. J Clin Invest. 2020;130(7):3603–20. https://doi.org/10.1172/JCI133334.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Blauwhoff-Buskermolen S, Versteeg KS, de van der Schueren MA, den Braver NR, Berkhof J, Langius JA, et al. Loss of muscle mass during chemotherapy is predictive for poor survival of patients with metastatic colorectal cancer. J Clin Oncol. 2016;34(12):1339–44. https://doi.org/10.1200/JCO.2015.63.6043.

CAS  Article  PubMed  Google Scholar 

Coletti D. Chemotherapy-induced muscle wasting: an update. Eur J Transl Myol. 2018;28(2):7587. https://doi.org/10.4081/ejtm.2018.7587.

Article  PubMed  PubMed Central  Google Scholar 

Mallard J, Hucteau E, Hureau TJ, Pagano AF. Skeletal muscle deconditioning in breast cancer patients undergoing chemotherapy: current knowledge and insights from other cancers. Front Cell Dev Biol. 2021;9:719643. https://doi.org/10.3389/fcell.2021.719643.

Article  PubMed  PubMed Central  Google Scholar 

• Hain BA, Xu H, Waning DL. Loss of REDD1 prevents chemotherapy-induced muscle atrophy and weakness in mice. J Cachexia Sarcopenia Muscle. 2021. https://doi.org/10.1002/jcsm.12795. Preclinical data to show that mTORC signaling and protein synthesis was compromised with chemotherapy.

Huot JR, Pin F, Bonetto A. Erratum: Muscle weakness caused by cancer and chemotherapy is associated with loss of motor unit connectivity. Am J Cancer Res. 2022;12(3):1435.

PubMed  PubMed Central  Google Scholar 

•• Guigni BA, Callahan DM, Tourville TW, Miller MS, Fiske B, Voigt T, et al. Skeletal muscle atrophy and dysfunction in breast cancer patients: role for chemotherapy-derived oxidant stress. Am J Physiol Cell Physiol. 2018;315(5):C744-C56. https://doi.org/10.1152/ajpcell.00002.2018. This study showed that oxidative stress and muscle atrophy correlated in chemotherapy-treated patients.

Anthony TG. Mechanisms of protein balance in skeletal muscle. Domest Anim Endocrinol. 2016;56(Suppl):S23–32. https://doi.org/10.1016/j.domaniend.2016.02.012.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Christensen JF, Jones LW, Andersen JL, Daugaard G, Rorth M, Hojman P. Muscle dysfunction in cancer patients. Ann Oncol. 2014;25(5):947–58. https://doi.org/10.1093/annonc/mdt551.

CAS  Article  PubMed  Google Scholar 

Khalil R. Ubiquitin-proteasome pathway and muscle atrophy. Adv Exp Med Biol. 2018;1088:235–48. https://doi.org/10.1007/978-981-13-1435-3_10.

CAS  Article  PubMed  Google Scholar 

Damrauer JS, Stadler ME, Acharyya S, Baldwin AS, Couch ME, Guttridge DC. Chemotherapy-induced muscle wasting: association with NF-κB and cancer cachexia. Eur J Transl Myol. 2018;28:7590. https://doi.org/10.4081/ejtm.2018.7590.

Article  PubMed  PubMed Central  Google Scholar 

Sakai H, Zhou Y, Miyauchi Y, Suzuki Y, Ikeno Y, Kon R, et al. Increased 20S proteasome expression and the effect of bortezomib during cisplatin-induced muscle atrophy. Biol Pharm Bull. 2022;45(7):910–8. https://doi.org/10.1248/bpb.b22-00177.

CAS  Article  PubMed  Google Scholar 

• Moller AB, Lonbro S, Farup J, Voss TS, Rittig N, Wang J, et al. Molecular and cellular adaptations to exercise training in skeletal muscle from cancer patients treated with chemotherapy. J Cancer Res Clin Oncol. 2019;145(6):1449-60. https://doi.org/10.1007/s00432-019-02911-5. This study showed that muscle, from patients treated with chemotherapy, had lower UPS signaling.

Neel BA, Lin Y, Pessin JE. Skeletal muscle autophagy: a new metabolic regulator. Trends Endocrinol Metab. 2013;24(12):635–43. https://doi.org/10.1016/j.tem.2013.09.004.

CAS  Article  PubMed  Google Scholar 

Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech. 2013;6(1):25–39. https://doi.org/10.1242/dmm.010389.

CAS  Article  PubMed  PubMed Central  Google Scholar 

• Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer. 2020;19(1):12. https://doi.org/10.1186/s12943-020-1138-4. This study showed that doxorubicin increased autophagy in muscle and caused muscle damage.

• Smuder AJ, Kavazis AN, Min K, Powers SK. Exercise protects against doxorubicin-induced markers of autophagy signaling in skeletal muscle. J Appl Physiol (1985). 2011;111(4):1190-8. https://doi.org/10.1152/japplphysiol.00429.2011. This study showed that doxorubicin increased autophagy in muscle and caused muscle damage and TUNEL-postive nuclei.

•• Mallard J, Hucteau E, Charles AL, Bender L, Baeza C, Pelissie M, et al. Chemotherapy impairs skeletal muscle mitochondrial homeostasis in early breast cancer patients. J Cachexia Sarcopenia Muscle. 2022;13(3):1896-907. https://doi.org/10.1002/jcsm.12991. This study showed that autophagy was increased with chemotherapy and mitochondria were disrupted in muscle from patients.

Schiessel DL, Baracos VE. Barriers to cancer nutrition therapy: excess catabolism of muscle and adipose tissues induced by tumour products and chemotherapy. Proc Nutr Soc. 2018;77(4):394–402. https://doi.org/10.1017/S0029665118000186.

CAS  Article  PubMed  Google Scholar 

Hua H, Kong Q, Zhang H, Wang J, Luo T, Jiang Y. Targeting mTOR for cancer therapy. J Hematol Oncol. 2019;12(1):71. https://doi.org/10.1186/s13045-019-0754-1.

Article  PubMed  PubMed Central  Google Scholar 

• Nissinen TA, Degerman J, Rasanen M, Poikonen AR, Koskinen S, Mervaala E, et al. Systemic blockade of ACVR2B ligands prevents chemotherapy-induced muscle wasting by restoring muscle protein synthesis without affecting oxidative capacity or atrogenes. Sci Rep. 2016;6:32695. https://doi.org/10.1038/srep32695. Preclinical data to show that mTORC signaling and protein synthesis was compromised with chemotherapy.

Gordon BS, Steiner JL, Williamson DL, Lang CH, Kimball SR. Emerging role for regulated in development and DNA damage 1 (REDD1) in the regulation of skeletal muscle metabolism. Am J Physiol Endocrinol Metab. 2016;311(1):E157–74. https://doi.org/10.1152/ajpendo.00059.2016.

Article  PubMed  PubMed Central  Google Scholar 

Guo B, Bennet D, Belcher DJ, Kim HG, Nader GA. Chemotherapy agents reduce protein synthesis and ribosomal capacity in myotubes independent of oxidative stress. Am J Physiol Cell Physiol. 2021;321(6):C1000–C9. https://doi.org/10.1152/ajpcell.00116.2021.

CAS  Article 

留言 (0)

沒有登入
gif