The necrosis- and ethylene-inducing peptide 1-like protein (NLP) gene family of the plant pathogen Corynespora cassiicola

Bae H, Kim MS, Sicher RC et al (2006) Necrosis- and Ethylene-Inducing Peptide from Fusarium oxysporum induces a complex cascade of transcripts associated with signal transduction and cell death in Arabidopsis. Plant Physiol 141:1056–1067. https://doi.org/10.1104/pp.106.076869.1056

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bailey TL, Boden M, Buske FA et al (2009) MEME Suite: tools for motif discovery and searching. Nucleic Acids Res 37:202–208. https://doi.org/10.1093/nar/gkp335

CAS  Article  Google Scholar 

Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

CAS  Article  Google Scholar 

Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bashi ZD, Hegedus DD, Buchwaldt L et al (2010) Expression and regulation of Sclerotinia sclerotiorum Necrosis and Ethylene-inducing peptides (NEPs). Mol Plant Pathol 11:43–53. https://doi.org/10.1111/j.1364-3703.2009.00571.x

CAS  Article  Google Scholar 

Bhatt S, Katzourakis A, Pybus OG (2010) Detecting natural selection in RNA virus populations using sequence summary statistics. Infect Genet Evol 10:421–430. https://doi.org/10.1016/j.meegid.2009.06.001

CAS  Article  PubMed  Google Scholar 

Böhm H, Albert I, Oome S et al (2014) A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1004491

Article  PubMed  PubMed Central  Google Scholar 

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

CAS  Article  PubMed  PubMed Central  Google Scholar 

Breton F, Sanier C, D’Auzac J (2000) Role of cassiicolin, a host-selective toxin in pathogenicity of C. cassiicola, causal agent of leaf disease of Hevea. J Nat Rubber Res 3:115–128

Google Scholar 

Buchfink B, Xie C, Huson DH (2014) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60. https://doi.org/10.1038/nmeth.3176

CAS  Article  PubMed  Google Scholar 

Cabral A, Oome S, Sander N et al (2012) Nontoxic Nep1-like proteins of the downy mildew pathogen Hyaloperonospora arabidopsidis: repression of necrosis-inducing activity by a surface-exposed region. Mol Plant-Microbe Interact 25:697–708. https://doi.org/10.1094/MPMI-10-11-0269

CAS  Article  PubMed  Google Scholar 

Dal’Sasso TCS, Rody HVS, Grijalba PE, Oliveira LO, (2021) Genome sequences and in silico effector mining of Corynespora cassiicola CC_29 and Corynespora olivacea CBS 114450. Arch Microbiol 203:5257–5265. https://doi.org/10.1007/s00203-021-02456-7

CAS  Article  Google Scholar 

Dal’Sasso TCS, Rody HVS, Oliveira LO (2022) Genome-wide analysis and evolutionary history of the Necrosis and Ethylene-inducing peptide 1-like protein (NLP) superfamily across the Dothideomycetes class of fungi. bioRxiv. https://doi.org/10.1101/2022.02.07.479250

Article  Google Scholar 

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and high-performance computing Europe PMC Funders Group. Nat Methods 9:772. https://doi.org/10.1038/nmeth.2109.jModelTest

CAS  Article  PubMed  PubMed Central  Google Scholar 

de Lamotte F, Duviau MP, Sanier C et al (2007) Purification and characterization of cassiicolin, the toxin produced by Corynespora cassiicola, causal agent of the leaf fall disease of rubber tree. J Chromatogr B Anal Technol Biomed Life Sci 849:357–362. https://doi.org/10.1016/j.jchromb.2006.10.051

CAS  Article  Google Scholar 

Déon M, Scomparin A, Tixier A et al (2012) First characterization of endophytic Corynespora cassiicola isolates with variant cassiicolin genes recovered from rubber trees in Brazil. Fungal Divers 54:87–99. https://doi.org/10.1007/s13225-012-0169-6

Article  Google Scholar 

Déon M, Fumanal B, Gimenez S et al (2014) Diversity of the cassiicolin gene in Corynespora cassiicola and relation with the pathogenicity in Hevea brasiliensis. Fungal Biol 118:32–47. https://doi.org/10.1016/j.funbio.2013.10.011

CAS  Article  PubMed  Google Scholar 

Dixon LJ, Schlub RL, Pernezny K, Datnoff LE (2009) Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology 99:1015–1027. https://doi.org/10.1094/PHYTO-99-9-1015

CAS  Article  PubMed  Google Scholar 

Dong S, Kong G, Qutob D et al (2012) The NLP toxin family in Phytophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity. Mol Plant-Microbe Interact 25:896–909. https://doi.org/10.1094/MPMI-01-12-0023-R

CAS  Article  PubMed  Google Scholar 

Duhan D, Gajbhiye S, Jaswal R et al (2021) Functional characterization of the Nep1-Like protein effectors of the necrotrophic pathogen – Alternaria brassicae. Front Microbiol 12:1–11. https://doi.org/10.3389/fmicb.2021.738617

Article  Google Scholar 

El-Gebali S, Mistry J, Bateman A et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432. https://doi.org/10.1093/nar/gky995

CAS  Article  PubMed  Google Scholar 

Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971. https://doi.org/10.1038/nprot.2007.131

CAS  Article  PubMed  Google Scholar 

Emms DM, Kelly S (2015) OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16:1–14. https://doi.org/10.1186/s13059-015-0721-2

CAS  Article  Google Scholar 

Fang YL, Peng YL, Fan J (2017) The Nep1-like protein family of Magnaporthe oryzae is dispensable for the infection of rice plants. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-04430-0

CAS  Article  Google Scholar 

Fellbrich G, Romanski A, Varet A et al (2002) NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J 32:375–390. https://doi.org/10.1046/j.1365-313X.2002.01454.x

CAS  Article  PubMed  Google Scholar 

Fouché S, Plissonneau C, Croll D (2018) The birth and death of effectors in rapidly evolving filamentous pathogen genomes. Curr Opin Microbiol 46:34–42. https://doi.org/10.1016/j.mib.2018.01.020

CAS  Article  PubMed  Google Scholar 

Franceschetti M, Maqbool A, Jiménez-Dalmaroni MJ et al (2017) Effectors of filamentous plant pathogens: commonalities amid diversity. Microbiol Mol Biol Rev 81:1–17. https://doi.org/10.1128/mmbr.00066-16

CAS  Article  Google Scholar 

Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693 LP – 709

Article  Google Scholar 

Gao S, Zeng R, Xu L et al (2020) Genome sequence and spore germination-associated transcriptome analysis of Corynespora cassiicola from cucumber. BMC Microbiol 20:1–20. https://doi.org/10.1186/s12866-020-01873-w

CAS  Article  Google Scholar 

Gijzen M, Nürnberger T (2006) Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 67:1800–1807. https://doi.org/10.1016/j.phytochem.2005.12.008

CAS  Article  PubMed  Google Scholar 

Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by Maximum Likelihood. Syst Biol 52:696–704. https://doi.org/10.1080/10635150390235520

Article  PubMed  Google Scholar 

Irieda H, Inoue Y, Mori M et al (2019) Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases. Proc Natl Acad Sci U S A 116:496–505. https://doi.org/10.1073/pnas.1807297116

CAS  Article  PubMed  Google Scholar 

Jones P, Binns D, Chang HY et al (2014) InterProScan 5: Genome-scale protein function classification. Bioinformatics 30:1236–1240. https://doi.org/10.1093/bioinformatics/btu031

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jones DA, Bertazzoni S, Turo CJ et al (2018) Bioinformatic prediction of plant–pathogenicity effector proteins of fungi. Curr Opin Microbiol 46:43–49. https://doi.org/10.1016/j.mib.2018.01.017

CAS  Article  PubMed  Google Scholar 

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

CAS  Article  PubMed  PubMed Central  Google Scholar 

Krogh A, Larsson B, Von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. https://doi.org/10.1006/jmbi.2000.4315

CAS  Article  PubMed  Google Scholar 

Lenarčič T, Albert I, Böhm H et al (2017) Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins. Science (80-) 358:1431–1434

Article  Google Scholar 

Levin E, Raphael G, Ma J et al (2019) Identification and functional analysis of NLP-encoding genes from the postharvest pathogen Penicillium expansum. Microorganisms. https://doi.org/10.3390/microorganisms7060175

Article  PubMed  PubMed Central  Google Scholar 

Liu L, Xu L, Jia Q et al (2019) Arms race: diverse effector proteins with conserved motifs. Plant Signal Behav. https://doi.org/10.1080/15592324.2018.1557008

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif