A novel mechanism for inhibiting proliferation of rheumatoid arthritis fibroblast-like synoviocytes: geniposide suppresses HIF-1α accumulation in the hypoxic microenvironment of synovium

Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity. 2017;46:183–96.

CAS  Article  Google Scholar 

Rao DA, Gurish MF, Marshall JL, et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature. 2017;542:110–4.

CAS  Article  Google Scholar 

Mankia K, Emery P. Is localized autoimmunity the trigger for rheumatoid arthritis? Unravelling new targets for prevention. Discov Med. 2015;20:129–35.

PubMed  Google Scholar 

Ganesan R, Rasool M. Fibroblast-like synoviocytes-dependent effector molecules as a critical mediator for rheumatoid arthritis: current status and future directions. Int Rev Immunol. 2017;36:20–30.

CAS  Article  Google Scholar 

Sun W, Ma J, Zhao H, et al. Resolvin D1 suppresses pannus formation via decreasing connective tissue growth factor caused by upregulation of miRNA-146a-5p in rheumatoid arthritis. Arthritis Res Ther. 2020;22:61.

CAS  Article  Google Scholar 

Ivan M, Kaelin WG Jr. The EGLN-HIF O2-sensing system: multiple inputs and feedbacks. Mol Cell. 2017;66:772–9.

CAS  Article  Google Scholar 

Deng W, Feng X, Li X, et al. Hypoxia-inducible factor 1 in autoimmune diseases. Cell Immunol. 2016;303:7–15.

CAS  Article  Google Scholar 

Watts ER, Walmsley SR. Inflammation and hypoxia: HIF and PHD isoform selectivity. Trends Mol Med. 2019;25:33–46.

CAS  Article  Google Scholar 

Hu F, Liu H, Xu L, et al. Hypoxia-inducible factor-1α perpetuates synovial fibroblast interactions with T cells and B cells in rheumatoid arthritis. Eur J Immunol. 2016;46:742–51.

CAS  Article  Google Scholar 

Ryu JH, Chae CS, Kwak JS, et al. Hypoxia-inducible factor-2α is an essential catabolic regulator of inflammatory rheumatoid arthritis. PLoS Biol. 2014;12: e1001881.

Article  Google Scholar 

Hu Y, Liu X, Xia Q, et al. Comparative anti-arthritic investigation of iridoid glycosides and crocetin derivatives from gardenia jasminoides ellis in freund’s complete adjuvant-induced arthritis in rats. Phytomedicine. 2019;53:223–33.

CAS  Article  Google Scholar 

Shan M, Yu S, Yan H, et al. A review on the phytochemistry, pharmacology, pharmacokinetics and toxicology of geniposide, a natural product. Molecules. 2017;22:1689.

Article  Google Scholar 

Li N, Li L, Wu H, Zhou H. Antioxidative property and molecular mechanisms underlying geniposide-mediated therapeutic effects in diabetes mellitus and cardiovascular disease. Oxid Med Cell Longev. 2019;2019:7480512.

PubMed  PubMed Central  Google Scholar 

Li F, Dai M, Wu H, et al. Immunosuppressive effect of geniposide on mitogen-activated protein kinase signalling pathway and their cross-talk in fibroblast-like synoviocytes of adjuvant arthritis rats. Molecules. 2018;23:91.

Article  Google Scholar 

Wang RH, Dai XJ, Wu H, et al. Anti-inflammatory effect of geniposide on regulating the functions of rheumatoid arthritis synovial fibroblasts via inhibiting sphingosine-1-phosphate receptors1/3 coupling gαi/gαs conversion. Front Pharm. 2020;11: 584176.

CAS  Article  Google Scholar 

Wang Y, Wu H, Deng R, et al. Geniposide downregulates the VEGF/SphK1/S1P pathway and alleviates angiogenesis in rheumatoid arthritis in vivo and in vitro. Phytother Res. 2021;35:4347–62.

CAS  Article  Google Scholar 

Sun M, Deng R, Wang Y, et al. Sphingosine kinase 1/sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 pathway: a novel target of geniposide to inhibit angiogenesis. Life Sci. 2020;256: 117988.

CAS  Article  Google Scholar 

Chen JY, Wu H, Li H, et al. Anti-inflammatory effects and pharmacokinetics study of geniposide on rats with adjuvant arthritis. Int Immunopharmacol. 2015;24:102–9.

CAS  Article  Google Scholar 

Dai MM, Wu H, Li H, et al. Effects and mechanisms of geniposide on rats with adjuvant arthritis. Int Immunopharmacol. 2014;20:46–53.

CAS  Article  Google Scholar 

Castelli S, Ciccarone F, Tavian D, et al. ROS-dependent HIF1α activation under forced lipid catabolism entails glycolysis and mitophagy as mediators of higher proliferation rate in cervical cancer cells. J Exp Clin Cancer Res. 2021;40:94.

CAS  Article  Google Scholar 

Li G, Yang T, Chen Y, et al. USP5 sustains the proliferation of glioblastoma through stabilization of CyclinD1. Front Pharm. 2021;12: 720307.

CAS  Article  Google Scholar 

Kang MS, Ryu E, Lee SW, et al. Regulation of PCNA cycling on replicating DNA by RFC and RFC-like complexes. Nat Commun. 2019;10:2420.

Article  Google Scholar 

Bottini N, Firestein GS. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat Rev Rheumatol. 2013;9:24–33.

CAS  Article  Google Scholar 

Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev. 2010;233:233–55.

CAS  Article  Google Scholar 

Liu N, Feng X, Wang W, et al. Paeonol protects against TNF-α-induced proliferation and cytokine release of rheumatoid arthritis fibroblast-like synoviocytes by upregulating FOXO3 through inhibition of miR-155 expression. Inflamm Res. 2017;66:603–10.

CAS  Article  Google Scholar 

He SD, Huang SG, Zhu HJ, et al. Oridonin suppresses autophagy and survival in rheumatoid arthritis fibroblast-like synoviocytes. Pharm Biol. 2020;58:146–51.

CAS  Article  Google Scholar 

Chen D, Wu YX, Qiu YB, et al. Hyperoside suppresses hypoxia-induced A549 survival and proliferation through ferrous accumulation via AMPK/HO-1 axis. Phytomedicine. 2020;67: 153138.

CAS  Article  Google Scholar 

Bahrami A, Atkin SL, Majeed M, et al. Effects of curcumin on hypoxia-inducible factor as a new therapeutic target. Pharm Res. 2018;137:159–69.

CAS  Article  Google Scholar 

Chen J, Cheng W, Li J, et al. Notch-1 and notch-3 mediate hypoxia-induced activation of synovial fibroblasts in rheumatoid arthritis. Arthritis Rheumatol. 2021;73:1810–9.

CAS  Article  Google Scholar 

Wohlrab C, Kuiper C, Vissers MC, et al. Ascorbate modulates the hypoxic pathway by increasing intracellular activity of the HIF hydroxylases in renal cell carcinoma cells. Hypoxia (Auckl). 2019;7:17–31.

Article  Google Scholar 

Nguyen TL, Durán RV. Prolyl hydroxylase domain enzymes and their role in cell signaling and cancer metabolism. Int J Biochem Cell Biol. 2016;80:71–80.

CAS  Article  Google Scholar 

Wollenick K, Hu J, Kristiansen G, et al. Synthetic transactivation screening reveals ETV4 as broad coactivator of hypoxia-inducible factor signaling. Nucleic Acids Res. 2012;40:1928–43.

CAS  Article  Google Scholar 

Bagnall J, Leedale J, Taylor SE, et al. Tight control of hypoxia-inducible factor-α transient dynamics is essential for cell survival in hypoxia. J Biol Chem. 2014;289:5549–64.

CAS  Article  Google Scholar 

Henze AT, Riedel J, Diem T, et al. Prolyl hydroxylases 2 and 3 act in gliomas as protective negative feedback regulators of hypoxia-inducible factors. Cancer Res. 2010;70:357–66.

CAS  Article  Google Scholar 

Lee SY, Kim HJ, Oh SC, et al. Genipin inhibits the invasion and migration of colon cancer cells by the suppression of HIF-1α accumulation and VEGF expression. Food Chem Toxicol. 2018;116:70–6.

CAS  Article  Google Scholar 

Tu Y, Li L, Zhu L, et al. Geniposide attenuates hyperglycemia-induced oxidative stress and inflammation by activating the Nrf2 signaling pathway in experimental diabetic retinopathy. Oxid Med Cell Longev. 2021;2021:9247947.

PubMed  PubMed Central  Google Scholar 

Park YH, Bae HC, Kim J, et al. Zinc oxide nanoparticles induce HIF-1α protein stabilization through increased reactive oxygen species generation from electron transfer chain complex III of mitochondria. J Dermatol Sci. 2018;91:104–7.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif