A comprehensive study of thermal conductivity models with metallic and non-metallic nanoparticles in the blood flow through a regular catheter in multi-stenosed artery

Abdelsalam SI, Bhatti M (2019) New insight into AuNP applications in tumour treatment and cosmetics through wavy annuli at the nanoscale. Sci Rep 9(1):1–14. https://doi.org/10.1038/s41598-018-36459-0

CAS  Article  Google Scholar 

Abdullah I, Naser N, Talib A, Mahali S (2015) Effects of magnetic field and hall current to the blood velocity and LDL transfer. J Phys Conf Ser 633(1):012133. https://doi.org/10.1088/1742-6596/633/1/012133

Article  Google Scholar 

Ahmed A, Nadeem S (2016) The study of (Cu, Ti0\(_\), SAl\(_\)O\(_\)) nanoparticles as antimicrobials of blood flow through diseased arteries. J Mol Liq 216:615–623. https://doi.org/10.1016/j.molliq.2016.01.059

CAS  Article  Google Scholar 

Ahmed A, Nadeem S (2017) Effects of magnetohydrodynamics and hybrid nanoparticles on a micropolar fluid with 6-types of stenosis. Results Phys 7:4130–4139. https://doi.org/10.1016/j.rinp.2017.10.032

Article  Google Scholar 

Akbar NS (2016) Non-Newtonian model study for blood flow through a tapered artery with a stenosis. Alex Eng J 55(1):321–329. https://doi.org/10.1016/j.aej.2015.09.010

Article  Google Scholar 

Akram J, Akbar NS, Tripathi D (2020) Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: a Sutterby fluid model. Microvasc Res 132:104062. https://doi.org/10.1016/j.mvr.2020.104062

CAS  Article  Google Scholar 

Alhussain ZA (2022) Mixed convective flow in a multiple port ventilation square cavity with insulated baffle. Case Stud Thermal Eng 30:101785. https://doi.org/10.1016/j.csite.2022.101785

Article  Google Scholar 

Alhussain ZA, Renuka A, Muthtamilselvan M (2021) A magnetobioconvective and thermal conductivity enhancement in nanofluid flow containing gyrotactic microorganism. Case Stud Thermal Eng 23:100809. https://doi.org/10.1016/j.csite.2020.100809

Article  Google Scholar 

Azmi W, Sharma K, Mamat R, Najafi G, Mohamad M (2016) The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids—a review. Renew Sustain Energy Rev 53:1046–1058. https://doi.org/10.1016/j.rser.2015.09.081

Article  Google Scholar 

Back L (1994) Estimated mean flow resistance increase during coronary artery catheterization. J Biomech 27(2):169–175. https://doi.org/10.1016/0021-9290(94)90205-4

CAS  Article  Google Scholar 

Ellahi R, Rahman S, Nadeem S, Akbar NS (2014) Blood flow of nanofluid through an artery with composite stenosis and permeable walls. Appl Nanosci 4(8):919–926. https://doi.org/10.1007/s13204-013-0253-6

CAS  Article  Google Scholar 

Elnaqeeb T (2019) Modeling of Au (NPs)-blood flow through a catheterized multiple stenosed artery under radial magnetic field. Eur Phys J Spec Top 228(12):2695–2712. https://doi.org/10.1140/epjst/e2019-900059-9

CAS  Article  Google Scholar 

Elnaqeeb T, Mekheimer KS, Alghamdi F (2016) Cu-blood flow model through a catheterized mild stenotic artery with a thrombosis. Math Biosci 282:135–146. https://doi.org/10.1016/j.mbs.2016.10.003

CAS  Article  Google Scholar 

Ghandi R, Sharma B, Kumawat C, Bég OA et al (2022) Modeling and analysis of magnetic hybrid nanoparticle (Au-Al\(_\)O\(_\) blood) based drug delivery through a bell-shaped occluded artery with joule heating, viscous dissipation and variable viscosity effects. Proc Inst Mech Eng Part E J Process Mech Eng. https://doi.org/10.1177/09544089221080273

Ghassemi M, Shahidian A (2017) Nano and bio heat transfer and fluid flow. Academic Press, New York. https://www.perlego.com/book/1831050/nano-and-bio-heat-transfer-and-fluid-flow-pdf

Hamilton RL, Crosser O (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1(3):187–191. https://doi.org/10.1021/i160003a005

CAS  Article  Google Scholar 

Hussain A, Sarwar L, Rehman A, Al Mdallal Q, Almaliki AH, ElShafay A (2022) Mathematical analysis of hybrid mediated blood flow in stenosis narrow arteries. Sci Rep 12(1):1–10. https://doi.org/10.1038/s41598-022-15117-6

CAS  Article  Google Scholar 

Ijaz S, Nadeem S (2017) A biomedical solicitation examination of nanoparticles as drug agents to minimize the hemodynamics of a stenotic channel. Eur Phys J Plus 132(11):1–13. https://doi.org/10.1140/epjp/i2017-11703-6

CAS  Article  Google Scholar 

Mansour M, Ahmed S, Hady F, Ibrahim F, Ismaeel A (2022) Numerical simulation for nanofluid leakage from a single 2D blood vessel. Alex Eng J 61(5):3999–4010. https://doi.org/10.1016/j.aej.2021.09.029

Article  Google Scholar 

Mathew A, Areekara S, Sabu A, Saleem S (2021) Significance of multiple slip and nanoparticle shape on stagnation point flow of silver-blood nanofluid in the presence of induced magnetic field. Surf Interfaces 25:101267. https://doi.org/10.1016/j.surfin.2021.101267

CAS  Article  Google Scholar 

Maxwell JC (1873) A treatise on electricity and magnetism. Clarendon Press, London. http://hdl.loc.gov/loc.rbc/General.15568v1.1

Mintsa HA, Roy G, Nguyen CT, Doucet D (2009) New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci 48(2):363–371. https://doi.org/10.1016/j.ijthermalsci.2008.03.009

CAS  Article  Google Scholar 

Muthtamilselvan M, Suganya S, Al-Mdallal QM (2021) Stagnationpoint flow of the Williamson nanofluid containing gyrotactic micro-organisms. Proc Natl Acad Sci India Sect A 91(4):633–648. https://doi.org/10.1007/s40010-021-00764-7

CAS  Article  Google Scholar 

Nadeem S, Ijaz S (2015) Single wall carbon nanotube (SWCNT) examination on blood flow through a multiple stenosed artery with variable nanofluid viscosity. AIP Adv 5(10):107217. https://doi.org/10.1063/1.4934583

CAS  Article  Google Scholar 

Nadeem S, Ijaz S (2015) Theoretical analysis of metallic nanoparticles on blood flow through tapered elastic artery with overlapping stenosis. IEEE Trans Nanobiosci 14(4):417–428. https://doi.org/10.1109/TNB.2015.2389253

Article  Google Scholar 

Noreen S, Rashidi M, Qasim M (2017) Blood flow analysis with considering nanofluid effects in vertical channel. Appl Nanosci 7(5):193–199. https://doi.org/10.1007/s13204-017-0564-0

CAS  Article  Google Scholar 

Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Trans Int J 11(2):151–170. https://doi.org/10.1080/08916159808946559

CAS  Article  Google Scholar 

Sadham Hussain I, Prakash D, Kumar S, Muthtamilselvan M (2021) Bioconvection of nanofluid flow in a thin moving needle in the presence of activation energy with surface temperature boundary conditions. Proc Inst Mech Eng Part E J Process Mech Eng. https://doi.org/10.1177/09544089211053969

Suganya S, Muthtamilselvan M, Alhussain ZA (2021) Activation energy and Coriolis force on Cu, TiO\(_\) water hybrid nanofluid flow in an existence of nonlinear radiation. Appl Nanosci 11(3):933–949. https://doi.org/10.1007/s13204-020-01647-w

CAS  Article  Google Scholar 

Torii R, Wood NB, Hughes AD, Thom SA, Aguado-Sierra J, Davies JE, Francis DP, Parker KH, Xu XY (2007) A computational study on the influence of catheter-delivered intravascular probes on blood flow in a coronary artery model. J Biomech 40(11):2501–2509. https://doi.org/10.1016/j.jbiomech.2006.11.004

Article  Google Scholar 

Tripathi J, Vasu B, Subba Reddy Gorla R, Chamkha AJ, Murthy P, Anwar Beg O (2021) Blood flow mediated hybrid nanoparticles in human arterial system: recent research, development and applications. J Nanofluids 10(1):1–30. https://doi.org/10.1166/jon.2021.1769

Article  Google Scholar 

Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21(1):58–64. https://doi.org/10.1016/S0142-727X(99)00067-3

CAS  Article  Google Scholar 

Yang Z, Gao D, Guo X, Jin L, Zheng J, Wang Y, Chen S, Zheng X, Zeng L, Guo M et al (2020) Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membranecamouflaged nanobullets. ACS Nano 14(12):17442–17457. https://doi.org/10.1021/acsnano.0c07721

CAS  Article  Google Scholar 

Zaman A, Ali N, Bég OA, Sajid M (2016) Heat and mass transfer to blood flowing through a tapered overlapping stenosed artery. Int J Heat Mass Transf 95:1084–1095. https://www.cheric.org/research/tech/periodicals/doi.phpart_seq=1377161

留言 (0)

沒有登入
gif