Synthesis of hybrid nanoflowers using extract of Ascoseira mirabilis, a large brown parenchymatous macroalga endemic to the Antarctic Ocean, as the organic component and evaluation of their antimicrobial, catalytic, and antioxidant activities

Altınkaynak C, Ildız N, Baldemir A, Özdemir N, Yılmaz V, Öçsoy İ (2019) Synthesis of organic-inorganic hybrid nanoflowers using Trigonella foenum-graecum seed extract and investigation of their anti-microbial activity. Derim 36:159–167. https://doi.org/10.16882/derim.2019.549151

Article  Google Scholar 

Baldemir A, Köse NB, Ildız N, İlgün S, Yusufbeyoğlu S, Yilmaz V, Ocsoy I (2017) Synthesis and characterization of green tea (Camellia sinensis (L.) Kuntze) extract and its major components-based nanoflowers: a new strategy to enhance antimicrobial activity. RSC Adv 7:44303–44308. https://doi.org/10.1039/C7RA07618E

CAS  Article  Google Scholar 

Baldemir A, Karaman U, Yusufbeyoğlu S, Eken A, Ildız N, İlgün S, Çolak C, Kaçmaz G, Öçsoy İ, Çankaya S (2018) A new strategy for enhancing acanthamoebicidal activity with synthesis of nanoflower of Laurocerausus officinalis Roemer (cherry laurel) fruit extracts. Mikrobiyol Bul 52:56–71. https://doi.org/10.5578/mb.66400

Article  Google Scholar 

Baldemir Kilic A, Altınkaynak C, Ildiz N, Ozdemir N, Yilmaz V, Ocsoy I (2020) A new approach for green synthesis and characterization of Artemisia L. (Asteraceae) genotype extracts-Cu2+ nanocomplexes (nanoflower) and their effective antimicrobial activity. Med Sci 9:191–196. https://doi.org/10.5455/medscience.2019.08.9165

Article  Google Scholar 

Cao G, Gao J, Zhou L, He Y, Li J, Jiang Y (2018) Enrichment and coimmobilization of cofactors and His-tagged ω-transaminase into nanoflowers: a facile approach to constructing self-sufficient biocatalysts. ACS Appl Nano Mater 1:3417–3425. https://doi.org/10.1021/acsanm.8b00626

CAS  Article  Google Scholar 

Celik C, Tasdemir D, Demirbas A, Katı A, Gül OT, Cimen B, Ocsoy I (2018) Formation of functional nanobiocatalysts with a novel and encouraging immobilization approach and their versatile bioanalytical applications. RSC Adv 8:25298–25303. https://doi.org/10.1039/C8RA03250E

CAS  Article  Google Scholar 

Celik C, Ildiz N, Ocsoy I (2020) Building block and rapid synthesis of catecholamines-inorganic nanoflowers with their peroxidase-mimicking and antimicrobial activities. Sci Rep 10:2903. https://doi.org/10.1038/s41598-020-59699-5

CAS  Article  Google Scholar 

Dadi S, Celik C, Ocsoy I (2020) Gallic acid nanoflower immobilized membrane with peroxidase-like activity form-cresol detection. Sci Rep 10:16765. https://doi.org/10.1038/s41598-020-73778-7

CAS  Article  Google Scholar 

Demirbas A (2020) Antimicrobial and catalytic activity of citrus fruits peels mediated nanoflowers. J Biol Macromol 20:41–51. https://doi.org/10.14533/jbm.20.41

Article  Google Scholar 

Demirbas A (2021) Comparison study of synthesized red (or blood) orange peels and juice extract-nanoflowers and their antimicrobial properties on fish pathogen (Yersinia ruckeri). Indian J Microbiol 61:324–330. https://doi.org/10.1007/s12088-021-00945-3

CAS  Article  Google Scholar 

Demirbas A, Yilmaz V, Ildiz N, Baldemir A, Ocsoy I (2017) Anthocyanins-rich berry extracts directed formation of Ag NPs with the investigation of their antioxidant and antimicrobial activities. J Mol Liq 248:1044–1049. https://doi.org/10.1016/j.molliq.2017.10.130

CAS  Article  Google Scholar 

Demirbas A, Kislakci E, Karaagac Z, Onal I, Ildiz N, Ocsoy I (2019) Preparation of biocompatible and stable iron oxide nanoparticles using anthocyanin integrated hydrothermal method and their antimicrobial and antioxidant properties. Mater Res Express 6:125011. https://doi.org/10.1088/2053-1591/ab540c

CAS  Article  Google Scholar 

Ghaffari-Moghaddam M, Hadi-Dabanlou R, Khajeh M, Rakhshanipour M, Shameli K (2014) Green synthesis of silver nanoparticles using plant extracts. Korean J Chem Eng 31:548–557. https://doi.org/10.1007/s11814-014-0014-6

CAS  Article  Google Scholar 

Gül OT, Ocsoy I (2021) Preparation of magnetic horseradish peroxidase-laccase nanoflower for rapid and efficient dye degradation with dual mechanism and cyclic use. Mater Lett 303:130501. https://doi.org/10.1016/j.matlet.2021.130501

CAS  Article  Google Scholar 

Güven OC, Kar M, Koca FD (2022) Synthesis of cherry stalk extract based organic@inorganic hybrid nanoflowers as a novel Fenton reagent: evaluation of their antioxidant, catalytic, and antimicrobial activities. J Inorg Organomet Polym 32:1026–1032. https://doi.org/10.1007/s10904-021-02160-5

CAS  Article  Google Scholar 

Ildiz N, Baldemir A, Altinkaynak C, Özdemir N, Yilmaz V, Ocsoy I (2017) Self assembled snowball-like hybrid nanostructures comprising Viburnum opulus L. extract and metal ions for antimicrobial and catalytic applications. Enzyme Microb Technol 102:60–66. https://doi.org/10.1016/j.enzmictec.2017.04.003

CAS  Article  Google Scholar 

Jayakumar A, Vedhaiyan RK (2019) Rapid synthesis of phytogenic silver nanoparticles using Clerodendrum splendens: its antibacterial and antioxidant activities. Korean J Chem Eng 36:1869–1881. https://doi.org/10.1007/s11814-019-0389-5

CAS  Article  Google Scholar 

Jiang N, Zhang C, Li M, Li S, Hao Z, Li Z, Wu Z, Li C (2021) The fabrication of amino acid incorporated nanoflowers with intrinsic peroxidase-like activity and its application for efficiently determining glutathione with TMB radical cation as indicator. Micromachines 12:1099. https://doi.org/10.3390/mi12091099

Article  Google Scholar 

Kharisov BI (2008) A review for synthesis of nanoflowers. Recent Pat Nanotechnol 2:190–200. https://doi.org/10.2174/187221008786369651

CAS  Article  Google Scholar 

Koca FD (2022) Preparation of thymol incorporated organic-inorganic hybrid nanoflowers as a novel Fenton agent with intrinsic catalytic and antimicrobial activities. Inorg Nano-Met 52:322–327. https://doi.org/10.1080/24701556.2021.1980024

CAS  Article  Google Scholar 

Koca FD, Demirezen Yilmaz D, Ertas Onmaz N, Yilmaz E, Ocsoy I (2020) Green synthesis of allicin based hybrid nanoflowers with evaluation of their catalytic and antimicrobial activities. Biotechnol Lett 42:1683–1690. https://doi.org/10.1007/s10529-020-02877-2

CAS  Article  Google Scholar 

Kumar B, Smita K, Borovskikh P, Shchegolkov A, Debut A, Cumbal L (2021) Spectroscopic and morphological characterization of Nephelium lappaceum peel extract synthesized gold nanoflowers and its catalytic activity. Inorg Chem Commun 133:108868. https://doi.org/10.1016/j.inoche.2021.108868

CAS  Article  Google Scholar 

Li H, Hou J, Duan L, Ji C, Zhang Y, Chen V (2017) Graphene oxide-enzyme hybrid nanoflowers for efficient water soluble dye removal. J Hazard Mater 338:93–101. https://doi.org/10.1016/j.jhazmat.2017.05.014

CAS  Article  Google Scholar 

Liu Y, Shao X, Kong D, Li G, Li Q (2021) Immobilization of thermophilic lipase in inorganic hybrid nanoflower through biomimetic mineralization. Colloids Surf B Biointerfaces 197:111450. https://doi.org/10.1016/j.colsurfb.2020.111450

CAS  Article  Google Scholar 

Mei Y, Zhang Y, Li J, Deng X, Yang Y, Yang Q, Jiang B, Xin B, Yao T, Wu J (2022) Synthesis of Co-doped CeO2 nanoflower: enhanced adsorption and degradation performance toward tetracycline in Fenton-like reaction. J Alloys Compd 904:163879. https://doi.org/10.1016/j.jallcom.2022.163879

CAS  Article  Google Scholar 

Molina GA, Esparza R, López-Miranda JL, Hernández-Martínez AR, España-Sánchez BL, Elizalde-Peña EA, Estevez M (2019) Green synthesis of Ag nanoflowers using Kalanchoe daigremontiana extract for enhanced photocatalytic and antibacterial activities. Colloids Surf B 180:141–149. https://doi.org/10.1016/j.colsurfb.2019.04.044

CAS  Article  Google Scholar 

Öztürk Küp F, Çoşkunçay S, Duman F (2020) Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): evaluation of their antibacterial, antioxidant and drug release system activities. Mater Sci Eng C 107:110207. https://doi.org/10.1016/j.msec.2019.110207

CAS  Article  Google Scholar 

Shende P, Kasture P, Gaud RS (2018) Nanoflowers: the future trend of nanotechnology for multi-applications. Artif Cells Nanomed Biotechnol 46(Suppl 1):413–422. https://doi.org/10.1080/21691401.2018.1428812

CAS  Article  Google Scholar 

Somturk B, Yilmaz I, Altinkaynak C, Karatepe A, Özdemir N, Ocsoy I (2016) Synthesis of urease hybrid nanoflowers and their enhanced catalytic properties. Enzyme Microb Technol 86:134–142. https://doi.org/10.1016/j.enzmictec.2015.09.005

CAS  Article  Google Scholar 

Tran TD, Nguyen PT, Le TN, Kim MI (2021) DNA-copper hybrid nanoflowers as efficient laccase mimics for colorimetric detection of phenolic compounds in paper microfluidic devices. Biosens Bioelectron 182:113187. https://doi.org/10.1016/j.bios.2021.113187

CAS  Article  Google Scholar 

Varadharaj V, Ramaswamy A, Sakthivel R, Subbaiya R, Barabadi H, Chandrasekaran M, Saravanan M (2020) Antidiabetic and antioxidant activity of green synthesized starch nanoparticles: an in vitro study. J Clust Sci 31:1257–1266. https://doi.org/10.1007/s10876-019-01732-3

CAS  Article  Google Scholar 

Virk HS (2011) Fabrication and characterization of metallic copper and copper oxide nanoflowers. Pak J Chem 1:148–154. https://doi.org/10.15228/2011.v01.i04.p01

Article  Google Scholar 

Wu ZF, Wang Z, Zhang Ma YL, He CY, Li H, Chen L, Huo QS, Wang L, Li ZQ (2016) Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity. Sci Rep 6:22412. https://doi.org/10.1038/srep22412

CAS  Article  Google Scholar 

Yilmaz SG, Demirbas A, Karaagac Z, Dadi S, Celik C, Yusufbeyoglu S, Ildiz N, Mandal AK, Cimen B, Ocsoy I (2022) Synthesis of taurine-Cu3(PO4)2 hybrid nanoflower and their peroxidase-mimic and antimicrobial properties. J Biotechnol 343:96–101. https://doi.org/10.1016/j.jbiotec.2021.11.009

CAS  Article  Google Scholar 

Yin Y, Xiao Y, Lin G, Lin XQ, Cai Z (2015) An enzyme-inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity. J Mater Chem B 3:2295–2300. https://doi.org/10.1039/C4TB01697A

CAS  Article  Google Scholar 

Zhang B, Li P, Zhang H, Li X, Tian L, Wang H, Chen X, Ali N, Ali Z, Zhang Q (2016) Red-blood-cell-like BSA/Zn3(PO4)2 hybrid particles: preparation and application to adsorption of heavy metal ions. Appl Surf Sci 366:328–338. https://doi.org/10.1016/j.apsusc.2016.01.074

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif