Study of the evolution of nanopores and microstructural degradation of fine-grained YSZ–NiO(Ni) anode materials in a hydrogen sulfide containing atmosphere

Adams JW, Ruh R, Mazdiyasni KS (1997) Young’s modulus, flexural strength, and fracture of yttria-stabilized zirconia versus temperature. J Am Ceram Soc 80(4):903–908. https://doi.org/10.1111/j.1151-2916.1997.tb02920.x

CAS  Article  Google Scholar 

Alstrup I, Rostrup-Nielsen JR, Roen S (1981) High temperature hydrogen sulfide chemisorption on nickel catalysts. Appl Catalysis 1:303–314

CAS  Article  Google Scholar 

Andrzejczuk M, Vasylyev O, Brodnikovskyi I et al (2014) Microstructural changes in NiO–ScSZ composite following reduction processes in pure and diluted hydrogen. Mater Charact 87:159–165. https://doi.org/10.1016/j.matchar.2013.11.011

CAS  Article  Google Scholar 

Anstis GR, Chantikul P, Lawn BR et al (1981) A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurement. J Am Ceram Soc 64(9):533–538. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x

CAS  Article  Google Scholar 

ASTM C 1327–03 (2003) Standard test method for Vickers indentation hardness of advanced ceramics. ASTM Int. https://doi.org/10.1520/C1327-03

Article  Google Scholar 

ASTM F 43-99 (2005) Test methods for resistivity of semiconductor materials. CA, SEMI. https://www.scribd.com/document/228100659/astm-F43-99

ASTM E 384–11 (2011) Standard test method for Knoop and Vickers hardness of materials. ASTM Int. https://doi.org/10.1520/E0384-11

Article  Google Scholar 

ASTM C 1421–18 (2018) Standard test methods for determination of fracture toughness of advanced ceramics at ambient temperature. ASTM Int. https://doi.org/10.1520/C1421-18

Article  Google Scholar 

ASTM E 399–20a (2020) Standard test method for linear-elastic plane-strain fracture toughness of metallic materials. ASTM Int. https://doi.org/10.1520/E0399-20A

Article  Google Scholar 

Basaleh AS, Mohamed RM (2019) Photodegradation of thiophene over ZrO2–SiO2 nanoparticles: impact of copper decoration on their photocatalytic activity. Appl Nanosci 9:2051–2058. https://doi.org/10.1007/s13204-019-00992-9

CAS  Article  Google Scholar 

Bharathi E, Sivakumari G, Karthikeyan B et al (2020) Hydrothermal implement with supporting of semiconductor ZrO2 (ZO), Ag doped ZrO2 (AZO) nanomaterial and its astrophysical, UV photocatalytic employment on Rh6G dye. Appl Nanosci 10:3491–3502. https://doi.org/10.1007/s13204-020-01453-4

CAS  Article  Google Scholar 

Buchaniec S, Sciazko A, Mozdzierz M et al (2019) A novel approach to the optimization of a solid oxide fuel cell anode using evolutionary algorithms. IEEE Access 7:34361–34372. https://doi.org/10.1109/ACCESS.2019.2904327

Article  Google Scholar 

Budzianowski WM, Milewski J (2011) Solid-oxide fuel cells in power generation applications: A review. Recent Patents Eng 5(3):165–189. https://doi.org/10.2174/187221211797636926

Article  Google Scholar 

Chau TP, Kandasamy S, Chinnathambi A et al (2021) Synthesis of zirconia nanoparticles using Laurus nobilis for use as an antimicrobial agent. Appl Nanosci. https://doi.org/10.1007/s13204-021-02041-w

Article  Google Scholar 

Chiang L-K, Liu H-C, Shiu Y-H et al (2008) Thermo-electrochemical and thermal stress analysis for an anode-supported SOFC cell. Renew Energy 33(12):2580–2588. https://doi.org/10.1016/j.renene.2008.02.023

CAS  Article  Google Scholar 

Chiang L-K, Liu H-C, Shiu Y-H et al (2010) Thermal stress and thermo-electrochemical analysis of a planar anode-supported solid oxide fuel cell: effects of anode porosity. J Power Sources 195(7):1895–1904. https://doi.org/10.1016/j.jpowsour.2009.10.011

CAS  Article  Google Scholar 

Ciccoli R, Cigolotti V, Lo Presti R (2010) Molten carbonate fuel cells fed with biogas: Combating H2S. Waste Manage 30(6):1018–1024. https://doi.org/10.1016/j.wasman.2010.02.022

CAS  Article  Google Scholar 

Clemmer RMC, Corbin SF (2009) The influence of pore and Ni morphology on the electrical conductivity of porous Ni/YSZ composite anodes for use in solid oxide fuel cell applications. Solid State Ionics 180:721–730. https://doi.org/10.1016/j.ssi.2009.02.030

CAS  Article  Google Scholar 

Cook RF, Pharr GM (1990) Direct observation and analysis of indentation cracking in glasses and ceramics. J Am Ceram Soc 73(4):787–817. https://doi.org/10.1111/j.1151-2916.1990.tb05119.x

CAS  Article  Google Scholar 

Danilenko I, Glazunov F, Konstantinova T et al (2014) Effect of Ni/NiO particles on structure and crack propagation in zirconia based composites. Adv Mater Lett 5(8):465–471. https://doi.org/10.5185/amlett.2014.amwc1040II

CAS  Article  Google Scholar 

Danilenko I, Lasko G, Brykhanova I et al (2017) The peculiarities of structure formation and properties of zirconia-based nanocomposites with addition of Al2O3 and NiO. Nanoscale Res Lett 12:125. https://doi.org/10.1186/s11671-017-1901-7

CAS  Article  Google Scholar 

Dees DW, Balachandran U, Dorris SE et al (1989) Interfacial effects in monolithic solid oxide fuel cells. SOFC I: The Electrochemical Society Proceedings Series, Pennington, NJ, 317–321. https://www.electrochem.org/sofc/Solid_Oxide_Fuel_Cells_PV89-11.pdf

Długosz O, Szostak K, Banach M (2020) Photocatalytic properties of zirconium oxide–zinc oxide nanoparticles synthesised using microwave irradiation. Appl Nanosci 10:941–954. https://doi.org/10.1007/s13204-019-01158-3

CAS  Article  Google Scholar 

Doroshkevich AS, Asgerov EB, Shylo AV et al (2019) Direct conversion of the water adsorption energy to electricity on the surface of zirconia nanoparticles. Appl Nanosci 9:1603–1609. https://doi.org/10.1007/s13204-019-00979-6

CAS  Article  Google Scholar 

Duriagina Z, Kulyk V, Kovbasiuk T et al (2021) Synthesis of functional surface layers on stainless steels by laser alloying. Metals 11(3):434. https://doi.org/10.3390/met11030434

CAS  Article  Google Scholar 

Ettler M, Blaβ G, Menzler NH (2007) Characterization of Ni–YSZ-cermets with respect to redox stability. Fuel Cells 7(5):349–355. https://doi.org/10.1002/fuce.200700007

CAS  Article  Google Scholar 

Ettler M, Timmermann H, Malzbender J et al (2010) Durability of Ni anodes during reoxidation cycles. J Power Sources 195(17):5452–5467. https://doi.org/10.1016/j.jpowsour.2010.03.049

CAS  Article  Google Scholar 

Evans AG, Charles EA (1976) Fracture toughness determinations by indentation. J Am Ceram Soc 59(7–8):371–372. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x

CAS  Article  Google Scholar 

Fischer W, Malzbender J, Blass G et al (2005) Residual stresses in planar solid oxide fuel cells. J Power Sources 150:73–77. https://doi.org/10.1016/j.jpowsour.2005.02.014

CAS  Article  Google Scholar 

Gogotsi GA, Dub SN, Lomonova EE et al (1995) Vickers and Knoop indentation behaviour of cubic and partially stabilized zirconia crystals. J Eur Ceram Soc 15(5):405–413. https://doi.org/10.1016/0955-2219(95)91431-M

CAS  Article  Google Scholar 

Gupta RN (2021) Study of pulse electrodeposition parameters for nano YSZ-Ni coatings and its effect on tribological and corrosion characteristics. Appl Nanosci 11:173–185. https://doi.org/10.1007/s13204-020-01567-9

CAS  Article  Google Scholar 

Haga A, Adachi S, Shiratori Y et al (2008) Poisoning of SOFC anodes by various fuel impurities. Solid State Ionics 179(27–32):1427–1431. https://doi.org/10.1016/j.ssi.2008.02.062

CAS  Article  Google Scholar 

Hassan N (2021) Catalytic performance of nanostructured materials recently used for developing fuel cells’ electrodes. Int J Hydrog Energy 46(79):39315–39368. https://doi.org/10.1016/j.ijhydene.2021.09.177

CAS  Article  Google Scholar 

Hernandez AB, Cortés-Arriagada D, García HC et al (2020) Quantum molecular study on doping effect in titanium and vanadium clusters: their application to remove some chemical species. Appl Nanosci 10:37–49. https://doi.org/10.1007/s13204-019-01072-8

CAS  Article  Google Scholar 

Ivasyshyn AD, Vasyliv BD (2001) Effect of the size and form of specimens on the diagram of growth rates of fatigue cracks. Mater Sci 37(6):1002–1004. https://doi.org/10.1023/A:1015669913601

Article  Google Scholar 

Jin HM, Shen MS (2009) Study of integrity of NiO oxide film by acoustic emission method. In: Proceedings of the 5th International conference on natural computation (ICNC-2009), Tianjin, China, 14–16 August 2009. https://doi.org/10.1109/ICNC.2009.133

Khajavi P, Hendriksen PV, Chevalier J et al (2020) Improving the fracture toughness of stabilized zirconia-based solid oxide cells fuel electrode supports: effects of type and concentration of stabilizer(s). J Eur Ceram Soc 40(15):5670–5682. https://doi.org/10.1016/j.jeurceramsoc.2020.05.042

CAS  Article  Google Scholar 

Kharchenko YV, Blikharskyy ZY, Vira VV et al (2019) Study of structural changes in a nickel oxide containing anode material during reduction and oxidation at 600 °C. Nanocomposites, Nanostructures, and Their Applications. Springer Proc Phys 221:595–604. https://doi.org/10.1007/978-3-030-17759-1_42

CAS  Article  Google Scholar 

Komatsu Y, Sciazko A, Shikazono N (2021) Isostatic pressing of screen printed nickel-gadolinium doped ceria anodes on electrolyte-supported solid oxide fuel cells. J Power Sources 485:229317. https://doi.org/10.1016/j.jpowsour.2020.229317

CAS  Article  Google Scholar 

Korsunska N, Baran M, Papusha V et al (2019) The peculiarities of light absorption and light emission in Cu-doped Y-stabilized ZrO2 nanopowders. Appl Nanosci 9:965–973. https://doi.org/10.1007/s13204-018-0839-0

CAS  Article  Google Scholar 

Kübier J (2002) Fracture toughness of ceramics using the SEVNB method: From a preliminary study to a standard test method, in Fracture Resistance Testing of Monolithic and Composite Brittle Materials, ed. J Salem et al. ASTM Int 93–106. https://doi.org/10.1520/STP10473S

Kulyk VV, Duriagina ZA, Vasyliv BD et al (2021a) Effects of yttria content and sintering temperature on the microstructure and tendency to brittle fracture of yttria-stabilized zirconia. Arch Mater Sci Eng 109(2):65–79. https://doi.org/10.5604/01.3001.0015.2625

Article  Google Scholar 

Kulyk VV, Vasyliv BD, Duriagina ZA et al (2021b) The effect of water vapor containing hydrogenous atmospheres on the microstructure and tendency to brittle fracture of anode materials of YSZ–NiO(Ni) system. Arch Mater Sci Eng 108(2):49–67. https://doi.org/10.5604/01.3001.0015.0254

Article  Google Scholar 

Kwak BH, Youn HK, Chung JS (2008) Ni and metal aluminate mixtures for solid oxide fuel cell anode supports. J Power Sources 185(2):633–640. https://doi.org/10.1016/j.jpowsour.2008.09.009

CAS  Article  Google Scholar 

Lanzini A, Leone P (2010) Experimental investigation of direct internal reforming of biogas in solid oxide fuel cells. Int J Hydrog Energy 35(6):2463–2476. https://doi.org/10.1016/j.ijhydene.2009.12.146

CAS  Article  Google Scholar 

Lawn BR, Fuller ER (1975) Equilibrium penny-like cracks in indentation fracture. J Mater Sci 10(12):2016–2024. https://doi.org/10.1007/BF00557479

CAS  Article  Google Scholar 

Lawn BR, Swain MV (1975) Microfracture beneath point indentations in brittle solids. J Mater Sci 10(1):113–122. https://doi.org/10.1007/BF00541038

CAS  Article 

留言 (0)

沒有登入
gif