Peculiarities of the Innervation of Epicardial Adipose Tissue in a Rat with Aging (Immunohistochemical Study)

Afanas'ev, Yu.I. and Kolodeznikova, E.D., Buraya zhirovaya tkan’ (Brown Adipose Tissue), Irkutsk: IGU, 1995.

Baranova, A.V., Adipokine genetics: unbalanced protein secretion by adipose tissue as a cause of the metabolic syndrome, Genetika, 2008, vol. 44, no. 10, pp. 1338–1355.

CAS  PubMed  Google Scholar 

Dedov, I.I., Mel’nichenko, G.A., and Butrova, S.A., Adipose tissue as an endocrine organ, Ozhirenie i Metabolism, 2006, no. 1, pp. 7–13.

Dil’man, V.M., Chetyre modeli meditsiny (Four Models of Medicine), Leningrad: Meditsina, 1987.

Kolos, E.A., Grigor’ev, I.P., and Korzhevskii, D.E., A marker for synaptic contacts—synaptophysin, Morfologiya, 2015, vol. 147, no. 1, pp. 78–82.

Google Scholar 

Korzhevskii, D.E. and Kolos, E.A., Protein PGP 9.5 and its application as a functional marker in neuromorphology, Med. Akad. Zh., 2013, vol. 13, no. 4, pp. 29–35.

Google Scholar 

Krasil’nikova, T.B., Simonenkova, A.V., Karabit-skaya, N.L., et al., Peculiarities of structure and function of adipose tissue under normal conditions and in the development of obesity, Uchenye Zapiski SPbGMU im. Akad. I.P. Pavlova, 2012, vol. 19, no. 3, pp. 99–107.

Google Scholar 

Titov, V.N., Functional differences between visceral fat cells and subcutaneous adipocytes, Klin. Med., 2015, vol. 93, no. 2, pp. 14–23.

CAS  Google Scholar 

Uchasova, E.G., Gruzdeva, O.V., Dyleva, Yu.A., and Akbasheva, O.E., Epicardial adipose tissue: Pathophysiology and role in the development of cardiovascular diseases, Byull. Sibirskoi Med., 2018, vol. 17, no. 4, pp. 254–263.

Google Scholar 

Chumasov, E.I., Kolos, E.A., Petrova, E.S., and Korzhevskii, D.E., Immunogistokhimiya perifericheskoi nervnoi sistemy (Immunohistochemistry of Peripheral Nervous System), St. Petersburg: SpetsLit, 2020.

Bartness, T.J. and Ryu, V., Neural control of white, beige and brown adipocytes, Int. J. Obesit. Suppl., 2015, vol. 5, p. 35. https://doi.org/10.1038/ijosup.2015.9

Article  Google Scholar 

Chi, J., Wu, Z., Choi, C.H.J., et al., Three-dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density, Cell Metab., 2018, vol. 27, pp. 226–236.

CAS  Article  Google Scholar 

Chi, J., Lin, Z., Barr, W., et al., Early postnatal interactions between beige adipocytes and sympathetic neurites regulate innervation of subcutaneous fat, eLife, 2021, vol. 10. e64693. https://doi.org: 10.7554/eLife.64693

De Matteis, R., Ricquier, D., and Cinti, S., TH-, NPY-, SP-, and CGRP-immunoreactive nerves in interscapular brown adipose tissue of adult rats acclimated at different temperatures: an immunohistochemical study, J. Neurocytol., 1998, vol. 27, no. 12, pp. 877–886.

Geerling, J.J., Boon, M.R., Kooijman, S., et al., Sympathetic nervous system control of triglyceride metabolism: novel concepts derived from recent studies, J. Lipid Res., 2014, vol. 55, no. 2, pp. 180–189.

CAS  Article  Google Scholar 

Giordano, A., Morroni, M., Santone, G., et al., Tyrosine hydroxylase, neuropeptide Y, substance P, calcitonin gene-related peptide and vasoactive intestinal peptide in nerves of rat periovarian adipose tissue: an immunohistochemical and ultrastructural investigation, J. Neurocytol., 1996, vol. 25, no. 2, pp. 125–136.

CAS  Article  Google Scholar 

Iacobellis, G. and Willens, H.J., Echocardiographic epicardial fat: a review of research and clinical applications, J. Amer. Soc. Echocardiogr., 2009, vol. 22, no. 12, pp. 1311–1319.

Article  Google Scholar 

Harms, M. and Seale, P., Brown and beige fat: development, function and therapeutic potential, Nat. Med., 2013, vol. 19, no. 10, pp. 1252–1263.

CAS  Article  Google Scholar 

Himms-Hagen, J., Cui, J., and Lynn Sigurdson, S., Sympathetic and sensory nerves in control of growth of brown adipose tissue: Effects of denervation and of capsaicin, Neurochem. Int., 1990, vol. 17, no. 2, pp. 271–279.

CAS  Article  Google Scholar 

McKenney, M.L., Schultz, K.A., Boyd, J.H., et al., Epicardial adipose excision slows the progression of porcine coronary atherosclerosis, J. Cardiothorac. Surg., 2014, vol. 9, p. 2. https://doi.org/10.1186/1749-8090-9-2

Article  Google Scholar 

Mulya, A. and Kirwan, G.P., Brown and beige adipose tissue: Therapy for obesity and its comorbidities? Endocr. Metab. Clin. North Amer., 2016, vol. 45, no. 3, pp. 605–621.

Article  Google Scholar 

Norman, D., Mukherjee, S., Symons, D., et al., Neuropeptides in interscapular and perirenal brown adipose tissue in the rat: A plurality of innervation, J. Neurocytol., 1988, vol. 17, no. 3, pp. 305–311.

CAS  Article  Google Scholar 

Payne, G.A., Kohr, M.C., and Tune, J.D., Epicardial perivascular adipose tissue as a therapeutic target in obesity-related coronary artery disease, Brit. J. Pharmacol., 2012, vol. 165, no. 3, pp. 659–669.

CAS  Article  Google Scholar 

Sacks, H.S. and Fain, J.N., Human epicardial adipose tissue: A review, Amer. Heart J., 2007, vol. 153, no. 6, pp. 907–917.

CAS  Article  Google Scholar 

Sanchez-Gurmaches, J., Hung, C.-M., Sparks, C.A., et al., PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors, Cell Metab., 2012, vol. 16, pp. 348–362.

CAS  Article  Google Scholar 

Vaughan, C.H., Zarebidaki, E., Ehlen, J.C., and Bartness, T.J., Analysis and measurement of the sympathetic and sensory innervation of white and brown adipose tissue, Methods Enzymol., 2014, vol. 537, pp. 199–225.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif