Interrelation of MicroRNAs and Transposons in Aging and Carcinogenesis

Mustafin, R.N. and Khusnutdinova, E.K., The role of interactions between transposons and epigenetic factors in aging, Adv. Gerontol., 2017, no. 4, pp. 516–528.

Khavinson, V.Kh., Kuznik B.I., and Ryzhak, G.A., Peptide bioregulators: The new class of geroprotectors. Communication 1. Results of experimental studies, Usp. Gerontol., 2012, vol. 25, no. 4, pp. 696–708.

Google Scholar 

Khavinson, V.Kh., Therapeutic peptides: Past, present, future, Klin. Med., 2020, vol. 98, no. 3, pp. 165–177.

Article  Google Scholar 

Andrenacci, D., Cavaliere, V., and Lattanzi, G., The role of transposable elements activity in aging and their possible involvement in laminopathic diseases, Ageing Res. Rev., 2020, vol. 57, p. 1000995.

Article  CAS  Google Scholar 

Ahwazi, R.P., Kiani, M., Dinarvand, M., et al., Immobilization of HIV-1 Tat peptide on gold nanoparticles: A feasible approach for siRNA delivery, J. Cell Physiol., 2020, vol. 235, pp. 2049–2059.

CAS  PubMed  Article  Google Scholar 

Anwar, S.L., Wulaningsih, W., and Lehmann, U., Transposable elements in human cancer: Causes and consequences of deregulation, Int. J. Mol. Sci., 2017, vol. 18. Е974.

Attermann, A.S., Bjerregaard, A.M., Saini, S.K., et al., Human endogenous retroviruses and their implication for immunotherapeutics of cancer, Ann. Oncol., 2018, vol. 29, pp. 2183–2191.

CAS  PubMed  Article  Google Scholar 

Autio, A., Nevalainen, T., Mishra, B.H., et al., Effect of aging on the transcriptomic changes associated with the expression of the HERV-K (HML-2) provirus at 1q22, Immunol. Ageing, 2020, vol. 17, p. 11.

CAS  Article  Google Scholar 

Baker, J.R., Vuppusetty, C., Colley, T., et al., MicroRNA-570 is a novel regulator of cellular senescence and inflammaging, FASEB J., 2019, vol. 33, pp. 1605–1616.

CAS  PubMed  Article  Google Scholar 

Behbahanipour, M., Peymani, M., Salari, M., et al., Expression profiling of blood microRNAs 885, 361, and 17 in the patients with the Parkinson’s disease: integrating interaction data to uncover the possible triggering age-related mechanisms, Sci. Rep., 2019, vol. 9, p. 13759.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Bermejo, A.V., Ragonnaud, E., Daradoumis, J., and Holst, P., Cancer associated endogenous retroviruses: Ideal immune target for adenovirus-based immunotherapy, Int. J. Mol. Sci., 2020, vol. 21, p. 4843.

CAS  Article  Google Scholar 

Cardelli, M., The epigenetic alterations of endogenous retroelements in aging, Mech. Ageing Dev., 2018, vol. 174, pp. 30–46.

CAS  PubMed  Article  Google Scholar 

Chen, H., Zheng, X., Xiao, D., and Zheng, Y., Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence, Aging Cell, 2016, vol. 15, pp. 542–552.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chen, Y.F., Stampley, J.E., Irving, B.A., and Tammy, R.D., Chronic nucleoside reverse transcriptase inhibitors disrupt mitochondrial homeostasis and promote premature endothelial senescence, Toxicol. Sci., 2019, vol. 172, pp. 445–456.

CAS  PubMed  Article  Google Scholar 

Cho, J.H., Dimri, M., and Dimri, G.P., MicroRNA-31 is a transcriptional target of histone deacetylase inhibitors and a regulator of cellular senescence, J. Biol. Chem., 2015, vol. 290, pp. 10555–10567.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Couzigou, J.M., Andre, O., Guillotin, B., et al., Use of microRNA-encoded peptide miPEP172c to stimulate nodulation in soybean, New Phytol., 2016, vol. 211, pp. 379–381.

CAS  PubMed  Article  Google Scholar 

Dahiya, N., Sarachana, T., Kulkarni S. et al., MiR-570 interacts with mitochondrial ATPase subunit g(ATP5L) encoding mRNA in stored platelets, Platelets, 2017, vol. 28, pp. 74–81.

CAS  PubMed  Article  Google Scholar 

De Cecco, M., Criscione, S.W., Peckham, E.J., et al., Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements, Aging Cell, 2013, vol. 12, pp. 247–256.

CAS  PubMed  Article  Google Scholar 

De Cecco, M., Ito, T., Petrashen, A.P., et al., L1 drives IFN in senescent cells and promotes age-associated inflammation, Nature, 2019, vol. 566, pp. 73–78.

CAS  PubMed  Article  Google Scholar 

Dellago, H., Preschitz-Kammerhofer, B., Terlecki-Zaniewicz, L., et al., High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan, Aging Cell, 2013, vol. 12, pp. 446–458.

CAS  PubMed  Article  Google Scholar 

Dluzen, D.F., Kim, Y., Bastian, P., et al., MicroRNAs modulate oxidative stress in hypertension through PARP-1 regulation, Oxid. Med. Cell. Longev., 2017, vol. 2017, p. 3984280.

PubMed  PubMed Central  Article  CAS  Google Scholar 

El Baidouri, M., Kim, K.D., Abernathy, B., et al., A new approach for annotation of transposable elements using small RNA mapping, Nucleic Acids Res., 2015, vol. 43. е84.

Elsner, D., Meusemann, K., and Korb, J., Longevity and transposon defense, the case of termite reproductives, Proc. Nat. Acad. Sci. U.S.A., 2018, vol. 115, pp. 5504–5509.

CAS  Article  Google Scholar 

Erichsen, L., Beermann, A., Arauzo-Bravo, M.J., et al., Genome-wide hypomethylation of LINE-1 and Alu retroelements in cell-free DNA of blood is an epigenetic biomarker of human aging, Saudi. J. Biol. Sci., 2018, vol. 25, pp. 1220–1226.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fang, J., Morsalin, S., Rao, V.N., and Reddy, E.S.P., Decoding of non-coding DNA and non-coding RNA: Pri-micro RNA-encoded novel peptides regulate migration of cancer cells, J. Pharm. Sci. Pharmacol., 2017, vol. 3, pp. 23–27.

Article  Google Scholar 

Filshtein, T.J., Mackenzie, C.O., Dale, M.D., et al., Origin-based identification of microRNA targets, Mobile Genet. Elements, 2011, vol. 2, pp. 184–192.

Article  Google Scholar 

Gregory, P.A., Bert, A.G., Paterson, E.L., et al., The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1, Nat. Cell. Biol., 2008, vol. 10, pp. 593–601.

CAS  PubMed  Article  Google Scholar 

Guo, D., Ye, Y., Qi, J., et al., Age and sex differences in microRNAs expression during the process of thymus aging, Acta Biochim. Biophys. Sin. (Shanghai), 2017, vol. 49, рр. 409–419.

Haendeler, J., Hoffmann, J., Diehl, J.F., et al., Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells, Circ. Res., 2004, vol. 94, pp. 768–775.

CAS  PubMed  Article  Google Scholar 

Huang, J.Z., Chen, M., Chen, D., et al., A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth, Mol. Cell, 2017, vol. 68, pp. 171–184.

CAS  PubMed  Article  Google Scholar 

Ipson, B.R., Fletcher, M.B., Espinoza, S.E., and Fisher, A.L., Identifying exosome-derived microRNAs as candidate biomarkers of frailty, J. Frailty Aging, 2018, vol. 7, pp. 100–103.

CAS  PubMed  PubMed Central  Google Scholar 

Juliano, C.E., Reich, A., Liu, N., et al., Piwi proteins and Piwi-interacting RNAs function in Hydra somatic stem cells, Proc. Nat. Acad. Sci. U.S.A., 2014, vol. 111, pp. 337–342.

CAS  Article  Google Scholar 

Kang, M., Tang, B., Li, J., et al., Identification of miPEP133 as a novel tumor-suppressor microprotein encoded by miR-34a pri-miRNA, Mol. Cancer, 2020, vol. 19, p. 143.

CAS  PubMed  PubMed Central  Article  Google Scholar 

KarakaUlah, G. and Yandim, C., Signature changes in the expressions of protein-coding genes, lncRNAs, and repeat elements in early and late cellular senescence, Turk. J. Biol., 2020, vol. 44, pp. 356–370.

Article  CAS  Google Scholar 

Kurth, J., Krause, B.J., Schwarzenbock, S.M., et al., First-in-human dosimetry of gastrin-releasing peptide receptor antagonist [177Lu]Lu-RM2: A radiopharmaceutical for the treatment of metastatic castration-resistant prostate cancer, Europ. J. Nucl. Med. Mol. Imaging, 2020, vol. 47, pp. 123–135.

CAS  Article  Google Scholar 

Lee, B.P., Buric, I., George-Pandeth, A., et al., MicroRNAs miR-203-3p, miR-664-3p and miR-708-5p are associated with median strain lifespan in mice, Sci. Rep., 2017, vol. 7, p. 44620.

PubMed  PubMed Central  Article  Google Scholar 

Li, X., Song, Y., Liu, D., et al., MiR-495 promotes senescence of mesenchymal stem cells by targeting BMI-1, Cell. Physiol. Biochem., 2017, vol. 42, pp. 780–796.

CAS  PubMed  Article  Google Scholar 

Nidadavolu, L.S., Niedernhofer, L.J., and Khan, S.A., Identification of microRNAs dysregulated in cellular senescence driven by endogenous genotoxic stress, Aging (Albany N.Y.), 2013, vol. 5, рр. 460–473.

Niu, L., Lou, F., Sun, Y., et al., A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation, Sci. Adv., 2020, vol. 6. eaaz2059.

Noren Hooten, N., Fitzpatrick, M., and Wood, W.H., 3rd, et al., Age-related changes in microRNA levels in serum, Aging (Albany N.Y.), 2013, vol. 5, рр. 725–740.

Oyama, Y., Onishi, H., Koga, S., et al., Patched 1-interacting peptide represses fibrosis in pancreatic cancer to augment the effectiveness of immunotherapy, J. Immunother., 2019, vol. 43, pp. 121–133. https://doi.org/10.1097/CJI.0000000000000305

Article  CAS  Google Scholar 

Pal, S. and Tyler, J.K., Epigenetics and aging, Sci. Adv., 2016, vol. 2. e1600584.

Prel, A., Dozier, C., Combier, J.P., et al., Evidence that regulation of pri-miRNA/miRNA expression is not a general rule of miPEPs function in humans, Int. J. Mol. Sci., 2021, vol. 22, p. 3432.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Qin, S., Jin, P., Zhou, X., et al., The role of transposable elements in the origin and evolution of microRNAs in human, PLoS One, 2015, vol. 10. e0131365.

Raihan, O., Brishti, A., Molla, M.R., et al., The age-dependent elevation of miR-335-3p leads to reduced cholesterol and impaired memory in brain, Neuroscience, 2018, vol. 390, pp. 160–173.

CAS  PubMed  Article  Google Scholar 

Roberts, J.T., Cardin, S.E., and Borcehrt, G.M., Burgeoning evidence indicates that microRNAs were initially formed from transposable element sequences, Mobile Genet. Elements, 2014, vol. 4. e29255.

Book  Google Scholar 

Robertson, P.A., Romero, M.A., Osburn, S.C., et al., Skeletal muscle LINE-1 ORF1 mRNA is higher in older humans but decreases with endurance exercise and is negatively associated with higher physical activity, J. Appl. Physiol., 2019, vol. 127, no. 4, pp. 895–904.

Rodriguez-Martin, B., Alvarez, E.G., Baez-Ortega, A., et al., Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition, Nat. Genet., 2020, vol. 52, pp. 306–319.

CAS 

留言 (0)

沒有登入
gif