Transcription factor EB inhibits non-alcoholic fatty liver disease through fibroblast growth factor 21

Ahadi M, Molooghi K, Masoudifar N, Namdar AB, Vossoughinia H, Farzanehfar M (2021) A review of non-alcoholic fatty liver disease in non-obese and lean individuals. J Gastroenterol Hepatol 36:1497–1507. https://doi.org/10.1111/jgh.15353

Article  PubMed  Google Scholar 

Askari F, Rashidkhani B, Hekmatdoost A (2014) Cinnamon may have therapeutic benefits on lipid profile, liver enzymes, insulin resistance, and high-sensitivity C-reactive protein in nonalcoholic fatty liver disease patients. Nutrition research (New York, NY) 34:143–148. https://doi.org/10.1016/j.nutres.2013.11.005

CAS  Article  Google Scholar 

Asrih M, Jornayvaz F (2013) Inflammation as a potential link between nonalcoholic fatty liver disease and insulin resistance. J Endocrinol 218:R25-36. https://doi.org/10.1530/joe-13-0201

CAS  Article  PubMed  Google Scholar 

Perry R, Kim T, Zhang X, Lee H, Pesta D, Popov V, Zhang D, Rahimi Y, Jurczak M, Cline G et al (2013) Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab 18:740–748. https://doi.org/10.1016/j.cmet.2013.10.004

CAS  Article  PubMed  PubMed Central  Google Scholar 

Watt MJ, Miotto PM, De Nardo W, Montgomery MK (2019) The liver as an endocrine organ-linking NAFLD and insulin resistance. Endocr Rev 40:1367–1393. https://doi.org/10.1210/er.2019-00034

Article  PubMed  Google Scholar 

Cobbina E, Akhlaghi F (2017) Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab Rev 49:197–211. https://doi.org/10.1080/03602532.2017.1293683

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gaggini M, Morelli M, Buzzigoli E, DeFronzo R, Bugianesi E, Gastaldelli A (2013) Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients 5:1544–1560. https://doi.org/10.3390/nu5051544

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhang J, Wang L, Xu J, Tang Y, Huang B, Chen Z, Zhang T, Shen HM, Wu Y, Xia D (2020) Bone marrow stromal cell-derived growth inhibitor serves as a stress sensor to induce autophagy. FEBS Lett 594:1248–1260. https://doi.org/10.1002/1873-3468.13732

CAS  Article  PubMed  Google Scholar 

Corà D, Bussolino F, Doronzo G (2021) TFEB signalling-related microRNAs and autophagy. Biomolecules. https://doi.org/10.3390/biom11070985

Article  PubMed  PubMed Central  Google Scholar 

Martina JA, Chen Y, Gucek M, Puertollano R (2012) MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8:903–914. https://doi.org/10.4161/auto.19653

CAS  Article  PubMed  PubMed Central  Google Scholar 

Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, Walther TC, Ferguson SM (2012) The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 5:ra42. https://doi.org/10.1126/scisignal.2002790

Xu Y, Ren J, He X, Chen H, Wei T, Feng W (2019) YWHA/14-3-3 proteins recognize phosphorylated TFEB by a noncanonical mode for controlling TFEB cytoplasmic localization. Autophagy 15:1017–1030. https://doi.org/10.1080/15548627.2019.1569928

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yan S (2022) Role of TFEB in autophagy and the pathogenesis of liver diseases. Biomolecules. https://doi.org/10.3390/biom12050672

Article  PubMed  PubMed Central  Google Scholar 

Yu S, Wang Z, Ding L, Yang L (2020) The regulation of TFEB in lipid homeostasis of non-alcoholic fatty liver disease: molecular mechanism and promising therapeutic targets. Life Sci 246:117418. https://doi.org/10.1016/j.lfs.2020.117418

CAS  Article  PubMed  Google Scholar 

Pan Q, Lin S, Li Y, Liu L, Li X, Gao X, Yan J, Gu B, Chen X, Li W et al (2021) A novel GLP-1 and FGF21 dual agonist has therapeutic potential for diabetes and non-alcoholic steatohepatitis. EBioMedicine 63:103202. https://doi.org/10.1016/j.ebiom.2020.103202

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gong Q, Hu Z, Zhang F, Cui A, Chen X, Jiang H, Gao J, Chen X, Han Y, Liang Q et al (2016) Fibroblast growth factor 21 improves hepatic insulin sensitivity by inhibiting mammalian target of rapamycin complex 1 in mice. Hepatology (Baltimore, MD) 64:425–438. https://doi.org/10.1002/hep.28523

CAS  Article  Google Scholar 

Gao Y, Zhang W, Zeng LQ, Bai H, Li J, Zhou J, Zhou GY, Fang CW, Wang F, Qin XJ (2020) Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy. Redox Biol 36:101635. https://doi.org/10.1016/j.redox.2020.101635

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ren H, Wang D, Zhang L, Kang X, Li Y, Zhou X, Yuan G (2019) Catalpol induces autophagy and attenuates liver steatosis in ob/ob and high-fat diet-induced obese mice. Aging (Albany NY) 11:9461–9477. https://doi.org/10.18632/aging.102396

CAS  Article  Google Scholar 

Settembre C, Zoncu R, Medina D, Vetrini F, Erdin S, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard M et al (2012) A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31:1095–1108. https://doi.org/10.1038/emboj.2012.32

CAS  Article  PubMed  PubMed Central  Google Scholar 

Martina JA, Puertollano R (2013) Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes. J Cell Biol 200:475–491. https://doi.org/10.1083/jcb.201209135

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhang H, Yan S, Khambu B, Ma F, Li Y, Chen X, Martina J, Puertollano R, Li Y, Chalasani N et al (2018) Dynamic MTORC1-TFEB feedback signaling regulates hepatic autophagy, steatosis and liver injury in long-term nutrient oversupply. Autophagy 14:1779–1795. https://doi.org/10.1080/15548627.2018.1490850

CAS  Article  PubMed  PubMed Central  Google Scholar 

Iroz A, Montagner A, Benhamed F, Levavasseur F, Polizzi A, Anthony E, Régnier M, Fouché E, Lukowicz C, Cauzac M et al (2017) A specific ChREBP and PPARα cross-talk is required for the glucose-mediated FGF21 response. Cell Rep 21:403–416. https://doi.org/10.1016/j.celrep.2017.09.065

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen L, Wang K, Long A, Jia L, Zhang Y, Deng H, Li Y, Han J, Wang Y (2017) Fasting-induced hormonal regulation of lysosomal function. Cell Res 27:748–763. https://doi.org/10.1038/cr.2017.45

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fang Y, Ji L, Zhu C, Xiao Y, Zhang J, Lu J, Yin J, Wei L (2020) Liraglutide alleviates hepatic steatosis by activating the TFEB-regulated autophagy-lysosomal pathway. Frontiers in cell and developmental biology 8:602574. https://doi.org/10.3389/fcell.2020.602574

Article  PubMed  PubMed Central  Google Scholar 

Sardiello M, Palmieri M, di Ronza A, Medina D, Valenza M, Gennarino V, Di Malta C, Donaudy F, Embrione V, Polishchuk R et al (2009) A gene network regulating lysosomal biogenesis and function. Science (New York, NY) 325:473–477. https://doi.org/10.1126/science.1174447

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif