Phase separation in immune regulation and immune-related diseases

Alberti S, Gladfelter A, Mittag T (2019) Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176:419–434. https://doi.org/10.1016/j.cell.2018.12.035

CAS  Article  PubMed  PubMed Central  Google Scholar 

Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Jülicher F, Hyman AA (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–1732. https://doi.org/10.1126/science.1172046

CAS  Article  PubMed  Google Scholar 

Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R (2016) ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164:487–498. https://doi.org/10.1016/j.cell.2015.12.038

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sun D, Wu R, Zheng J, Li P, Yu L (2018) Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Res 28:405–415. https://doi.org/10.1038/s41422-018-0017-7

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zbinden A, Pérez-Berlanga M, De Rossi P, Polymenidou M (2020) phase separatioN and neurodegenerative diseases: a disturbance in the force. Dev Cell 55:45–68. https://doi.org/10.1016/j.devcel.2020.09.014

CAS  Article  PubMed  Google Scholar 

Xiao Q, McAtee CK, Su X (2022) Phase separation in immune signalling. Nat Rev Immunol 22:188–199. https://doi.org/10.1038/s41577-021-00572-5

CAS  Article  PubMed  Google Scholar 

Lin WL, Dickson DW (2008) Ultrastructural localization of TDP-43 in filamentous neuronal inclusions in various neurodegenerative diseases. Acta Neuropathol 116:205–213. https://doi.org/10.1007/s00401-008-0408-9

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang Q, Zhang T, Wu J, Wen J, Tao D, Wan T, Zhu W (2019) Prognosis and risk factors of patients with upper urinary tract urothelial carcinoma and postoperative recurrence of bladder cancer in central China. BMC Urol 19:24. https://doi.org/10.1186/s12894-019-0457-5

CAS  Article  PubMed  PubMed Central  Google Scholar 

Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F et al (2018) Protein phase separation: a new phase in cell biology. Trends Cell Biol 28:420–435. https://doi.org/10.1016/j.tcb.2018.02.004

CAS  Article  PubMed  PubMed Central  Google Scholar 

Case LB, Ditlev JA, Rosen MK (2019) Regulation of transmembrane signaling by phase separation. Annu Rev Biophys 48:465–494. https://doi.org/10.1146/annurev-biophys-052118-115534

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gibson BA, Doolittle LK, Schneider MWG, Jensen LE, Gamarra N, Henry L, Gerlich DW, Redding S, Rosen MK (2019) Organization of chromatin by intrinsic and regulated phase separation. Cell 179:470-484.e421. https://doi.org/10.1016/j.cell.2019.08.037

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang Y, Zolotarev N, Yang CY, Rambold A, Mittler G, Grosschedl R (2020) A prion-like domain in transcription factor EBF1 promotes phase separation and enables B cell programming of progenitor chromatin. Immunity 53:1151-1167.e1156. https://doi.org/10.1016/j.immuni.2020.10.009

CAS  Article  PubMed  Google Scholar 

Yasuda S, Tsuchiya H, Kaiho A, Guo Q, Ikeuchi K, Endo A et al (2020) Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature 578:296–300. https://doi.org/10.1038/s41586-020-1982-9

CAS  Article  PubMed  Google Scholar 

Su X, Ditlev JA, Hui E, Xing W, Banjade S, Okrut J et al (2016) Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352:595–599. https://doi.org/10.1126/science.aad9964

CAS  Article  PubMed  PubMed Central  Google Scholar 

Palacios EH, Weiss A (2004) Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 23:7990–8000. https://doi.org/10.1038/sj.onc.1208074

CAS  Article  PubMed  Google Scholar 

Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP, Samelson LE (1998) LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92:83–92. https://doi.org/10.1016/s0092-8674(00)80901-0

CAS  Article  PubMed  Google Scholar 

Zhang W, Trible RP, Zhu M, Liu SK, McGlade CJ, Samelson LE (2000) Association of Grb2, Gads, and phospholipase C-gamma 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell angigen receptor-mediated signaling. J Biol Chem 275:23355–23361. https://doi.org/10.1074/jbc.M000404200

CAS  Article  PubMed  Google Scholar 

Abraham RT, Weiss A (2004) Jurkat T cells and development of the T-cell receptor signalling paradigm. Nat Rev Immunol 4:301–308. https://doi.org/10.1038/nri1330

CAS  Article  PubMed  Google Scholar 

Lo WL, Weiss A (2021) Adapting T cell receptor ligand discrimination capability via LAT. Front Immunol 12:673196. https://doi.org/10.3389/fimmu.2021.673196

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kadamur G, Ross EM (2013) Mammalian phospholipase C. Annu Rev Physiol 75:127–154. https://doi.org/10.1146/annurev-physiol-030212-183750

CAS  Article  PubMed  Google Scholar 

Zeng L, Palaia I, Šarić A, Su X (2021) PLCγ1 promotes phase separation of T cell signaling components. J Cell Biol 220. https://doi.org/10.1083/jcb.202009154

Takeuchi Y, Hirota K, Sakaguchi S (2020) Impaired T cell receptor signaling and development of T cell-mediated autoimmune arthritis. Immunol Rev 294:164–176. https://doi.org/10.1111/imr.12841

CAS  Article  PubMed  Google Scholar 

Levine AG, Arvey A, Jin W, Rudensky AY (2014) Continuous requirement for the TCR in regulatory T cell function. Nat Immunol 15:1070–1078. https://doi.org/10.1038/ni.3004

CAS  Article  PubMed  PubMed Central  Google Scholar 

Koretzky GA, Abtahian F, Silverman MA (2006) SLP76 and SLP65: complex regulation of signalling in lymphocytes and beyond. Nat Rev Immunol 6:67–78. https://doi.org/10.1038/nri1750

CAS  Article  PubMed  Google Scholar 

Oellerich T, Bremes V, Neumann K, Bohnenberger H, Dittmann K, Hsiao HH et al (2011) The B-cell antigen receptor signals through a preformed transducer module of SLP65 and CIN85. Embo J 30:3620–3634. https://doi.org/10.1038/emboj.2011.251

CAS  Article  PubMed  PubMed Central  Google Scholar 

Baba Y, Kurosaki T (2011) Impact of Ca2+ signaling on B cell function. Trends Immunol 32:589–594. https://doi.org/10.1016/j.it.2011.09.004

CAS  Article  PubMed  Google Scholar 

Engelke M, Pirkuliyeva S, Kühn J, Wong L, Boyken J, Herrmann N, Becker S, Griesinger C, Wienands J (2014) Macromolecular assembly of the adaptor SLP-65 at intracellular vesicles in resting B cells. Sci Signal 7:ra79. https://doi.org/10.1126/scitranslmed.2005104

Kühn J, Wong LE, Pirkuliyeva S, Schulz K, Schwiegk C, Fünfgeld KG et al (2016) The adaptor protein CIN85 assembles intracellular signaling clusters for B cell activation. Sci Signal 9:ra66. https://doi.org/10.1126/scisignal.aad6275

Wong LE, Bhatt A, Erdmann PS, Hou Z, Maier J, Pirkuliyeva S et al (2020) Tripartite phase separation of two signal effectors with vesicles priming B cell responsiveness. Nat Commun 11:848. https://doi.org/10.1038/s41467-020-14544-1

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–791. https://doi.org/10.1126/science.1232458

CAS  Article  PubMed  Google Scholar 

Du M, Chen ZJ (2018) DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361:704–709. https://doi.org/10.1126/science.aat1022

CAS  Article  PubMed  PubMed Central  Google Scholar 

Xia S, Chen Z, Shen C, Fu TM (2021) Higher-order assemblies in immune signaling: supramolecular complexes and phase separation. Protein Cell. https://doi.org/10.1007/s13238-021-00839-6

Article  PubMed  PubMed Central  Google Scholar 

Gray EE, Treuting PM, Woodward JJ, Stetson DB (2015) Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of Aicardi-Goutières syndrome. J Immunol 195:1939–1943. https://doi.org/10.4049/jimmunol.1500969

CAS  Article  PubMed  Google Scholar 

Xiao N, Wei J, Xu S, Du H, Huang M, Zhang S, Ye W, Sun L, Chen Q (2019) cGAS activation causes lupus-like autoimmune disorders in a TREX1 mutant mouse model. J Autoimmun 100:84–94. https://doi.org/10.1016/j.jaut.2019.03.001

CAS  Article  PubMed  Google Scholar 

Mohr L, Toufektchan E, von Morgen P, Chu K, Kapoor A, Maciejowski J (2021) ER-directed TREX1 limits cGAS activation at micronuclei. Mol Cell 81:724-738.e729. https://doi.org/10.1016/j.molcel.2020.12.037

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhou W, Mohr L, Maciejowski J, Kranzusch PJ (2021) cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Mol Cell 81:739-755.e737. https://doi.org/10.1016/j.molcel.2021.01.024

CAS  Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif