Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

Article  PubMed  Google Scholar 

Ming H, Li B, Tian H, Zhou L, Jiang J, Zhang T, Qiao L, Wu P, et al. A minimalist and robust chemo-photothermal nanoplatform capable of augmenting autophagy-modulated immune response against breast cancer. Mater Today Bio. 2022;15:100289.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Dutta B, Barick KC, Hassan PA. Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv Colloid Interface Sci. 2021;296:102509.

CAS  PubMed  Article  Google Scholar 

Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, Sung B, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2097–116.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Timin AS, Postovalova AS, Karpov TE, Antuganov D, Bukreeva AS, Akhmetova DR, Rogova AS, et al. Calcium carbonate carriers for combined chemo- and radionuclide therapy of metastatic lung cancer. J Control Release. 2022;344:1–11.

CAS  PubMed  Article  Google Scholar 

O’Brien NA, Huang H, McDermott MSJ, Madrid AM, Luo T, Ayala R, Issakhanian S, et al. Tucatinib has selective activity in HER2-positive cancers and significant combined activity with approved and novel breast cancer-targeted therapies. Mol Cancer Ther. 2022;21(5):751–61.

CAS  PubMed  Article  Google Scholar 

Cheng W, Chuang KH, Lo YJ, Chen M, Chen Y, Roffler SR, Ho HO, et al. Bispecific T-cell engagers non-covalently decorated drug-loaded PEGylated nanocarriers for cancer immunochemotherapy. J Control Release. 2022;344:235–48.

CAS  PubMed  Article  Google Scholar 

Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci. 2013;48(3):416–27.

CAS  PubMed  Article  Google Scholar 

Dutta B, Nema A, Shetake NG, Gupta J, Barick KC, Lawande MA, Pandey BN, et al. Glutamic acid-coated FeO nanoparticles for tumor-targeted imaging and therapeutics. Mater Sci Eng C Mater Biol Appl. 2020;112:110915.

CAS  PubMed  Article  Google Scholar 

Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14(1):85.

PubMed  PubMed Central  Article  Google Scholar 

Karimi M, Ghasemi A, Sahandi Zangabad P, Rahighi R, Moosavi Basri SM, Mirshekari H, Amiri M, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev. 2016;45(5):1457–501.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ge Z, Liu S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem Soc Rev. 2013;42(17):7289–325.

CAS  PubMed  Article  Google Scholar 

An F, Xin J, Deng C, Tan X, Aras O, Chen N, Zhang X, et al. Facile synthesis of near-infrared bodipy by donor engineering for tumor targeted dual-modal imaging. J Mater Chem B. 2021;9(45):9308–15.

CAS  PubMed  Article  Google Scholar 

Farhoudi L, Kesharwani P, Majeed M, Johnston TP, Sahebkar A. Polymeric nanomicelles of curcumin: potential applications in cancer. Int J Pharm. 2022;617:121622.

CAS  PubMed  Article  Google Scholar 

Overchuk M, Zheng G. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials. 2018;156:217–37.

CAS  PubMed  Article  Google Scholar 

Shen Z, Chen T, Ma X, Ren W, Zhou Z, Zhu G, Zhang A, et al. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T-weighted magnetic resonance imaging and chemotherapy. ACS Nano. 2017;11(11):10992–1004.

CAS  PubMed  Article  Google Scholar 

Wang H, Zhao P, Liang X, Gong X, Song T, Niu R, Chang J. Folate-PEG coated cationic modified chitosan-cholesterol liposomes for tumor-targeted drug delivery. Biomaterials. 2010;31(14):4129–38.

CAS  PubMed  Article  Google Scholar 

Ravi Kiran AVVV, Kusuma Kumari G, Krishnamurthy PT, Khaydarov RR. Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomater Sci. 2021;9(23):7667–704.

CAS  PubMed  Article  Google Scholar 

Zhang J, Lin Y, Lin Z, Wei Q, Qian J, Ruan R, Jiang X, Hou L, et al. Stimuli-responsive nanoparticles for controlled drug delivery in synergistic cancer immunotherapy. Adv Sci. 2022;9(5):e2103444.

Article  CAS  Google Scholar 

Zhou M, Huang H, Wang D, Lu H, Chen J, Chai Z, Yao SQ, Hu Y. Light-triggered PEGylation/dePEGylation of the nanocarriers for enhanced tumor penetration. Nano Lett. 2019;19(6):3671–5.

CAS  PubMed  Article  Google Scholar 

De R, Mahata MK, Kim K-T. Structure-based varieties of polymeric nanocarriers and influences of their physicochemical properties on drug delivery profiles. Adv Sci. 2022;9(10):e2105373.

Article  CAS  Google Scholar 

Zhao X, Yang CX, Chen LG, Yan XP. Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy. Nat Commun. 2017;8:14998.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Poudel K, Banstola A, Gautam M, Soe ZC, Pham LM, Jeong JH, Choi HG, et al. Redox/photo dual-responsive, self-targeted, and photosensitizer-laden bismuth sulfide nanourchins for combination therapy in cancer. Nanoscale. 2021;13(2):1231–47.

CAS  PubMed  Article  Google Scholar 

Kwon YW, Jo HS, Bae S, Seo Y, Song P, Song M, Yoon JH. Application of proteomics in cancer: recent trends and approaches for biomarkers discovery. Front Med. 2021;8:747333.

Article  Google Scholar 

Venugopalan A, Lynberg M, Cultraro CM, Nguyen KDP, Zhang X, Waris M, Dayal N, Abebe A, Maity TK, Guha U. SCAMP3 is a mutant EGFR phosphorylation target and a tumor suppressor in lung adenocarcinoma. Oncogene. 2021;40(18):3331–46.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mehrabi M, Mahdiuni H, Rasouli H, Mansouri K, Shahlaei M, Khodarahmi R. Comparative experimental/theoretical studies on the EGFR dimerization under the effect of EGF/EGF analogues binding: Highlighting the importance of EGF/EGFR interactions at site III interface. Int J Biol Macromol. 2018;115:401–17.

CAS  PubMed  Article  Google Scholar 

Santos EDS, Nogueira KAB, Fernandes LCC, Martins JRP, Reis AVF, Neto JBV, Júnior I, et al. EGFR targeting for cancer therapy: Pharmacology and immunoconjugates with drugs and nanoparticles. Int J Pharm. 2021;592:120082.

CAS  PubMed  Article  Google Scholar 

Wang D, Zhou J, Fang W, Huang C, Chen Z, Fan M, Zhang MR, et al. A multifunctional nanotheranostic agent potentiates erlotinib to EGFR wild-type non-small cell lung cancer. Bioact Mater. 2022;13:312–23.

CAS  PubMed  Article  Google Scholar 

Maruani A. Bispecifics and antibody-drug conjugates: a positive synergy. Drug Discov Today Technol. 2018;30:55–61.

PubMed  Article  Google Scholar 

Matusewicz L, Filip-Psurska B, Psurski M, Tabaczar S, Podkalicka J, Wietrzyk J, Ziółkowski P, et al. EGFR-targeted immunoliposomes as a selective delivery system of simvastatin, with potential use in treatment of triple-negative breast cancers. Int J Pharm. 2019;569: 118605.

CAS  PubMed  Article  Google Scholar 

Wang J, Zhang Y, Zhang G, Xiang L, Pang H, Xiong K, Lu Y, et al. Radiotherapy-induced enrichment of EGF-modified doxorubicin nanoparticles enhances the therapeutic outcome of lung cancer. Drug Deliv. 2022;29(1):588–99.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rusdin A, Wathoni N, Motoyama K, Joni IM, Lesmana R, Muchtaridi M. Nanoparticles targeted drug delivery aystem via epidermal growth factor receptor: a review. J Pharm. 2019;1(3):77–91.

Google Scholar 

Nan Y. Lung carcinoma therapy using epidermal growth factor receptor-targeted lipid polymeric nanoparticles co-loaded with cisplatin and doxorubicin. Oncol Rep. 2019;42(5):2087–96.

CAS  PubMed  Google Scholar 

Kuo YC, Liang CT. Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor. Biomaterials. 2011;32(12):3340–50.

CAS  PubMed  Article  Google Scholar 

Liao C, Sun Q, Liang B, Shen J, Shuai X. Targeting EGFR-overexpressing tumor cells using cetuximab-immunomicelles loaded with doxorubicin and superparamagnetic iron oxide. Eur J Radiol. 2011;80(3):699–705.

PubMed  Google Scholar 

Kim IY, Kang YS, Lee DS, Park HJ, Choi EK, Oh YK, Son HJ, et al. Antitumor activity of EGFR targeted pH-sensitive immunoliposomes encapsulating gemcitabine in A549 xenograft nude mice. J Control Release. 2009;140(1):55–60.

CAS  PubMed  Article  Google Scholar 

Aggarwal S, Yadav S, Gupta S. EGFR targeted PLGA nanoparticles using gemcitabine for treatment of pancreatic cancer. J Biomed Nanotechnol. 2011;7(1):137–8.

CAS  PubMed  Article 

留言 (0)

沒有登入
gif