Application of mathematical analysis on dialysis

Smith KA, Colton CK, Merrill EW, Evans LB. Convective transport in a batch dialyzer: determination of true membrane permeability from a single measurement. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:45–58.

CAS  Google Scholar 

Babb AL, Maurer CJ, Fry DL, Popovich RP, McKee RE. The determination of membrane permeabilities and solute diffusivities with applications to hemodialysis. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:59–68.

CAS  Google Scholar 

Hershey D, Cho SJ. Laminar flow of suspensions (blood): thickness and effective slip velocity of the film adjacent to the wall. Chem Eng Prog Symp Ser Chem Eng Med. 1966;62:140–5.

CAS  Google Scholar 

Kanamori T, Sakai K. Effect of mass transfer between plasma and erythrocyte interior on evaluating dialyzer performance: Artif. Organs Today. 1995;5:101–12.

CAS  Google Scholar 

Lightfoot EN. A formal description of ultrafiltration. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:79–84.

Google Scholar 

Keshaviah P. Hemofiltration. AIChE Symp Ser Chron Replace Kidney Funct. 1979;75:24–30.

CAS  Google Scholar 

Yoshida F. Rates of blood filtration. A brief review. Ind Eng Chem Fundam. 1986;25:633–5.

Article  CAS  Google Scholar 

Zydney AL, Colton CK. Continuous flow membrane plasmapheresis: theoretical models for flux and hemolysis prediction. Trans Am Soc Artif Intern Organs. 1982;28:408–12.

PubMed  CAS  Google Scholar 

Ohashi K, Tashiro K, Kushiya F, Matsumoto T, Yoshida S, Endo M, Horio T, Ozawa K, Sakai K. Rotation-induced Taylor vortex enhances filtrate flux in plasma separation. Trans Am Soc Artif Intern Organs. 1988;34:300–7.

CAS  Google Scholar 

Okazaki M, Yoshida F. Ultrafiltration of blood: effect of hematocrit on ultrafiltration rate. Ann Biomed Eng. 1976;4:138–50.

PubMed  Article  CAS  Google Scholar 

Mochizuki S, Zydney AL. Dextran transport through asymmetric ultrafiltration membranes: comparison with hydrodynamic models. J Membr Sci. 1992;68:21–41.

Article  CAS  Google Scholar 

Mochizuki S, Zydney AL. Effect of protein adsorption on the transport characteristics of asymmetric ultrafiltration membranes. Biotechnol Prog. 1992;8:553–61.

PubMed  Article  CAS  Google Scholar 

Abel JJ, Rowntree LG, Turner BB. On the removal of diffusible substances from the circulating blood of living animals by dialysis. J Pharmacol Exp Ther. 1914;5:275–316.

CAS  Google Scholar 

Grimsrud L, Babb AL. Velocity and concentration profiles for laminar flow of a Newtonian fluid in a dialyzer. Chem Eng Prog Symp Ser Chem Eng Med. 1966;62:20–31.

CAS  Google Scholar 

Wolf L Jr, Zaltzman S. Optimum geometry for artificial kidney dialyzers. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:104–11.

Google Scholar 

Shimizu S, Okazaki M, Yoshida F. Mass transfer in hemodialyzers. Jpn J Artif Organs. 1978;7:317–8 (in Japanese).

Google Scholar 

Sakai K. Technical determination of optimal dimensions of hollow fibre membranes for clinical dialysis. Nephrol Dial Transp. 1989;4:73–7.

Google Scholar 

Suzuki Y, Kohori F, Sakai K. Computer-aided design of hollow-fiber dialyzers. J Artif Organs. 2001;4:326–30.

Article  Google Scholar 

Noda I, Gryte CC. Mass transfer in regular arrays of hollow fibers in countercurrent dialysis. AIChE J. 1979;25:113–22.

Article  CAS  Google Scholar 

Fukuda M, Hosoya N, Kanamori T, Sakai K, Nishikido J, Watanabe T, Fushimi F. Determination of optimal fiber density of conventional and high performance dialyzers. Artif Organs Today. 1992;2:205–14.

Google Scholar 

Takesawa S, Terasawa M, Sakagami M, Kobayashi T, Hidai H, Sakai K. Nondestructive evaluation by X-ray computed tomography of dialysate flow pattern in capillary dialyzers. Trans Am Soc Artif Intern Organs. 1988;34:794–9.

CAS  Google Scholar 

Osuga T, Obata T, Ikehira H, Tanada S, Sasaki Y, Naito H. Dialysate pressure isobars in a hollow-fiber dialyzer determination from magnetic resonance imaging and numerical simulation of dialysate flow. Artif Organs. 1998;22:907–9.

PubMed  Article  CAS  Google Scholar 

Osuga T, Ikehira H, Obata T, Homma K, Yamane S, Naito H. Numerical simulation of dialysate flow in a hollow-fiber dialyzer. Johosyorigakkai Ronbunshi. 2002;43:2687–96 (in Japanese).

Google Scholar 

Osuga T, Obata T, Ikehira H. Detection of small degree of nonuniformity in dialysate flow in hollow-fiber dialyzer using proton magnetic resonance imaging. Magn Reson Imaging. 2004;22:417–20.

PubMed  Article  CAS  Google Scholar 

Yamamoto K, Matsuda M, Hirano A, Takizawa N, Iwashima S, Yakushiji T, Fukuda M, Miyasaka T, Sakai K. Computational evaluation of dialysis fluid flow in dialyzers with variously designed jackets. Artif Organs. 2009;33:481–6.

PubMed  Article  Google Scholar 

Zydney AL. Bulk mass transport limitations during high-flux hemodialysis. Artif Organs. 1993;17:919–24.

PubMed  Article  CAS  Google Scholar 

Kanamori T, Mizoguchi K. Analysis of solute transport by diffusion and convection in hollow-fiber hemodialyzer using the finite element method. Kagaku-Kogaku Ronbunsyu. 2011;37:91–5 (in Japanese).

Article  CAS  Google Scholar 

Sano Y, Nakayama A. A porous media approach for analyzing a countercurrent dialyzer system. J Heat Transf. 2012;134:072602.

Article  CAS  Google Scholar 

Sano Y. Operating conditions for hemodialysis treatment based on the volume averaging theory. Interdiscip Inf Sci. 2016;22:215–27.

Google Scholar 

Donato D, Boschetti-de-Fierro A, Zweigart C, Kolb M, Eloot S, Storr M, Krause B, Leypoldt K, Segers P. Optimization of dialyzer design to maximize solute removal with a two-dimensional transport model. J Membr Sci. 2017;541:519–28.

Article  CAS  Google Scholar 

Stiller S, Mann H, Brunner H. Backfiltration in hemodialysis with highly permeable membranes. Contr Nephrol. 1985;46:23–32.

Article  CAS  Google Scholar 

Hosoya N, Kanamori T, Sakai K. Optimal design of a high-performance dialyzer involving backfiltration. Artif Organs Today. 1993;2:287–98.

CAS  Google Scholar 

Mineshima M, Ishimori I, Ishida K, et al. Effects of internal filtration on the solute removal efficiency of a dialyzer. ASAIO J. 2000;46:456–60.

PubMed  Article  CAS  Google Scholar 

Sekino M, Yagi T, Tamamura N. New analytical model and its applications for hemodiafilter. Kagaku Kogaku Ronbunsyu. 2010;36:34–40 (in Japanese).

Article  CAS  Google Scholar 

Rautenbach R. Albrecht R. 5.1 Tubular module. In: Membrane Processes. Wiley, New York, pp. 135–137. 1989

Sekino M. Effect of ultrafiltration in hemodiafiltration system. Kagaku Kogaku Ronbunsyu. 2012;38:34–40 (in Japanese).

Article  Google Scholar 

Yamashita AC. Development of the hemodialyzer and hemodiafilter of the near future. Jpn J Clin Dial. 2020;36:439–44 (in Japanese).

Google Scholar 

Yamashita AC. Diafilters for predilution and postdilution on-line hemodiafiltration. Blood Purif. 2013;35:29–33.

PubMed  Article  CAS  Google Scholar 

Dorson A, Markovitz M. A pulsating ultrafiltration artificial kidney. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:85–9.

CAS  Google Scholar 

Bixler HJ, Nelsen LM, Besarab A. The Diaphron hemodiafilter: an alternative to dialysis for extracorporeal blood purification. Eng Prog Symp Ser Artif Kidney. 1968;64:90–103.

CAS  Google Scholar 

Kokubo K, Kobayashi K, Yamane T, Yamamoto K, Matsuda K. Portable blood purification device available in the event of natural disaster. Jpn J Clin Dial. 2020;36:459–64 (in Japanese).

Google Scholar 

Kokubo K, Kurihara Y, Kobayashi K, Moriguchi T, Matsuda K, Kobayashi H. Development of a blood purifier using thin hollow fiber membranes. Jpn J Artif Organs. 2014;43:238–41 (in Japanese).

Google Scholar 

Kurihara Y, Kokubo K, Kobayashi K, Ushiroda Y, Tsukao H, Yanagisawa M, Goto J, Harii N, Moriguchi T, Matsuda K, Kobayashi H. Development of hemofilter using fine diameter fibers. Ther Eng. 2015;27:44–7 (in Japanese).

Google Scholar 

留言 (0)

沒有登入
gif