Novel biodegradable molecularly imprinted polymer nanoparticles for drug delivery of methotrexate anti-cancer; synthesis, characterization and cellular studies

Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed: Nanotechnol Biol Med. 2012;8(2):147–166.

Han S, et al. A molecularly imprinted composite based on graphene oxide for targeted drug delivery to tumor cells. J Mater Sci. 2019;54(4):3331–41.

Article  CAS  Google Scholar 

Aoki K, Saito N. Biodegradable polymers as drug delivery systems for bone regeneration. Pharmaceutics. 2020;12(2):95.

Article  CAS  Google Scholar 

Łukasiewicz S, et al. Polycaprolactone nanoparticles as promising candidates for nanocarriers in novel nanomedicines. Pharmaceutics. 2021;13(2):191.

Article  CAS  Google Scholar 

Choi G, et al. Emerging nanomaterials with advanced drug delivery functions; focused on methotrexate delivery. Coord Chem Rev. 2018;359:32–51.

Article  CAS  Google Scholar 

Xu S, Wang L, Liu Z. Molecularly imprinted polymer nanoparticles: an emerging versatile platform for cancer therapy. Angew Chem Int Ed. 2021;60(8):3858–69.

Article  CAS  Google Scholar 

Gu Z, et al. Molecularly imprinted polymer-based smart prodrug delivery system for specific targeting, prolonged retention, and tumor microenvironment-triggered release. Angew Chem Int Ed. 2021;60(5):2663–7.

Article  CAS  Google Scholar 

Zaidi SA. Latest trends in molecular imprinted polymer based drug delivery systems. RSC Adv. 2016;6(91):88807–19.

Article  CAS  Google Scholar 

Zaidi SA. Molecular imprinting: a useful approach for drug delivery. Mater Sci Energy Technol. 2020;3:72–7.

CAS  Google Scholar 

Ishkuh FA, et al. Synthesis and characterization of paclitaxel-imprinted nanoparticles for recognition and controlled release of an anticancer drug. J Mater Sci. 2014;49(18):6343–52.

Article  CAS  Google Scholar 

Esfandyari-Manesh M, et al. Dipyridamole recognition and controlled release by uniformly sized molecularly imprinted nanospheres. Mater Sci Eng, C. 2011;31(8):1692–9.

Article  CAS  Google Scholar 

Zhang H. Molecularly imprinted nanoparticles for biomedical applications. Adv Mater. 2020;32(3):1806328.

Article  CAS  Google Scholar 

Cheong WJ, Yang SH, Ali F. Molecular imprinted polymers for separation science: a review of reviews. J Sep Sci. 2013;36(3):609–28.

Article  CAS  Google Scholar 

Sanagi MM, et al. Molecularly imprinted polymer solid-phase extraction for the analysis of organophosphorus pesticides in fruit samples. J Food Compos Anal. 2013;32(2):155–61.

Article  CAS  Google Scholar 

Roshan S, et al. Molecularly imprinted polymer-silica hybrid particles for biomimetic recognition of target drugs. Adv Polym Technol. 2019;2019:1–7.

Article  CAS  Google Scholar 

Ahmad OS, et al. Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol. 2019;37(3):294–309.

Article  CAS  Google Scholar 

Vakilinezhad MA, Alipour S, Montaseri H. Fabrication and in vitro evaluation of magnetic PLGA nanoparticles as a potential Methotrexate delivery system for breast cancer. J Drug Deliv Sci Technol. 2018;44:467–74.

Article  CAS  Google Scholar 

Rozalen M, et al. Synthesis of controlled-size silver nanoparticles for the administration of methotrexate drug and its activity in colon and lung cancer cells. RSC Adv. 2020;10(18):10646–60.

Article  CAS  Google Scholar 

Ensafi AA, Nasr-Esfahani P, Rezaei B. Simultaneous detection of folic acid and methotrexate by an optical sensor based on molecularly imprinted polymers on dual-color CdTe quantum dots. Anal Chim Acta. 2017;996:64–73.

Article  CAS  Google Scholar 

Liu Y, et al. An electrochemical sensor based on a molecularly imprinted polymer for determination of anticancer drug mitoxantrone. Sens Actuators, B Chem. 2018;255:544–51.

Article  CAS  Google Scholar 

Agrawal YO, et al. Methotrexate-loaded nanostructured lipid carrier gel alleviates imiquimod-induced psoriasis by moderating inflammation: formulation, optimization, characterization, in-vitro and in-vivo studies. Int J Nanomed. 2020;15:4763.

Article  CAS  Google Scholar 

Narayani R, Rao KP. Controlled release of anticancer drug methotrexate from biodegradable gelatin microspheres. J Microencapsul. 1994;11(1):69–77.

Article  CAS  Google Scholar 

Yang P, et al. Stimuli-responsive biodegradable poly (methacrylic acid) based nanocapsules for ultrasound traced and triggered drug delivery system. Biomaterials. 2014;35(6):2079–88.

Article  CAS  Google Scholar 

Yin W, Akala EO, Taylor RE. Design of naltrexone-loaded hydrolyzable crosslinked nanoparticles. Int J Pharm. 2002;244(1):9–19.

Article  CAS  Google Scholar 

Scheler S, Kitzan M, Fahr A. Cellular uptake and degradation behaviour of biodegradable poly (ethylene glycol-graft-methyl methacrylate) nanoparticles crosslinked with dimethacryloyl hydroxylamine. Int J Pharm. 2011;403(1–2):207–18.

Article  CAS  Google Scholar 

Esfandyari-Manesh M, et al. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: characterization and cellular cytotoxicity. Mater Sci Eng, C. 2016;62:626–33.

Article  CAS  Google Scholar 

Rodriguez de Anda DA et al. Effects of solvent used for fabrication on drug loading and release kinetics of electrosprayed temozolomide‐loaded PLGA microparticles for the treatment of glioblastoma. J Biomed Mater Res Part B Appl Biomater. 2019;107(7):2317–2324.

留言 (0)

沒有登入
gif