Infections in the first year of life and development of beta cell autoimmunity and clinical type 1 diabetes in high-risk individuals: the TRIGR cohort

Lind M, Wedel H, Rosengren A (2016) Excess mortality among persons with type 2 diabetes. N Engl J Med 374:788–789. https://doi.org/10.1056/NEJMc1515130

Article  PubMed  Google Scholar 

Rawshani A, Sattar N, Franzen S et al (2018) Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet 392:477–486. https://doi.org/10.1016/S0140-6736(18)31506-X

Article  PubMed  PubMed Central  Google Scholar 

Tuomilehto J (2013) The emerging global epidemic of type 1 diabetes. Curr Diab Rep 13:795–804. https://doi.org/10.1007/s11892-013-0433-5

Quattrin T, Haller MJ, Steck AK et al (2020) Golimumab and beta-cell function in youth with new-onset type 1 diabetes. N Engl J Med 383:2007–2017. https://doi.org/10.1056/NEJMoa2006136

CAS  Article  PubMed  Google Scholar 

Pociot F, Lernmark Å (2016) Genetic risk factors for type 1 diabetes. Lancet 387:2331–2339. https://doi.org/10.1016/S0140-6736(16)30582-7

CAS  Article  PubMed  Google Scholar 

Rewers M, Ludvigsson J (2016) Environmental risk factors for type 1 diabetes. Lancet 387:2340–2348. https://doi.org/10.1016/S0140-6736(16)30507-4

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kondrashova A, Reunanen A, Romanov A et al (2005) A six-fold gradient in the incidence of type 1 diabetes at the eastern border of Finland. Ann Med 37:67–72. https://doi.org/10.1080/07853890410018952

Article  PubMed  Google Scholar 

Söderström U, Aman J, Hjern A (2012) Being born in Sweden increases the risk for type 1 diabetes – a study of migration of children to Sweden as a natural experiment. Acta Paediatr 101:73–77. https://doi.org/10.1111/j.1651-2227.2011.02410.x

Article  PubMed  Google Scholar 

Oilinki T, Otonkoski T, Ilonen J, Knip M, Miettinen PJ (2012) Prevalence and characteristics of diabetes among Somali children and adolescents living in Helsinki, Finland. Pediatr Diabetes 13:176–180. https://doi.org/10.1111/j.1399-5448.2011.00783.x

CAS  Article  PubMed  Google Scholar 

Gamble DR, Kinsley ML, FitzGerald MG, Bolton R, Taylor KW (1969) Viral antibodies in diabetes mellitus. BMJ 3:627–630. https://doi.org/10.1136/bmj.3.5671.627

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yoon JW, Austin M, Onodera T, Notkins AL (1979) Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 300:1173–1179. https://doi.org/10.1056/NEJM197905243002102

CAS  Article  PubMed  Google Scholar 

Allen DW, Kim KW, Rawlinson WD, Craig ME (2018) Maternal virus infections in pregnancy and type 1 diabetes in their offspring: systematic review and meta-analysis of observational studies. Rev Med Virol 28(3):e1974. https://doi.org/10.1002/rmv.1974

CAS  Article  PubMed  Google Scholar 

Beyerlein A, Donnachie E, Jergens S, Ziegler AG (2016) Infections in early life and development of type 1 diabetes. JAMA 315:1899–1901. https://doi.org/10.1001/jama.2016.2181

Article  PubMed  Google Scholar 

Mustonen N, Siljander H, Peet A et al (2018) Early childhood infections precede development of beta-cell autoimmunity and type 1 diabetes in children with HLA-conferred disease risk. Pediatr Diabetes 19(2):293–299. https://doi.org/10.1111/pedi.12547

CAS  Article  PubMed  Google Scholar 

Hyoty H, Hiltunen M, Knip M et al (1995) A prospective study of the role of coxsackie B and other enterovirus infections in the pathogenesis of IDDM. Diabetes 44(6):652–657. https://doi.org/10.2337/diab.44.6.652

CAS  Article  PubMed  Google Scholar 

Viskari HR, Roivainen M, Reunanen A et al (2002) Maternal first-trimester enterovirus infection and future risk of type 1 diabetes in the exposed fetus. Diabetes 51(8):2568–2571. https://doi.org/10.2337/diabetes.51.8.2568

CAS  Article  PubMed  Google Scholar 

Viskari H, Knip M, Tauriainen S et al (2012) Maternal enterovirus infection as a risk factor for type 1 diabetes in the exposed offspring. Diabetes Care 35(6):1328–1332. https://doi.org/10.2337/dc11-2389

Article  PubMed  PubMed Central  Google Scholar 

Salminen K, Sadeharju K, Lönnrot M et al (2003) Enterovirus infections are associated with the induction of β-cell autoimmunity in a prospective birth cohort study. J Med Virol 69(1):91–98. https://doi.org/10.1002/jmv.10260

Article  PubMed  Google Scholar 

Wahlberg J, Fredriksson J, Nikolic E, Vaarala O, Ludvigsson J (2005) Environmental factors related to the induction of beta-cell autoantibodies in 1-yr-old healthy children. Pediatr Diabetes 6(4):199–205. https://doi.org/10.1111/j.1399-543X.2005.00129.x

Article  PubMed  Google Scholar 

Rešić-Lindehammer S, Honkanen H, Nix WA et al (2012) Seroconversion to islet autoantibodies after enterovirus infection in early pregnancy. Viral Immunol 25:254–261. https://doi.org/10.1089/vim.2012.0022

CAS  Article  PubMed  Google Scholar 

Christen U, Edelmann KH, McGavern DB et al (2004) A viral epitope that mimics a self-antigen can accelerate but not initiate autoimmune diabetes. J Clin Invest 114:1290–1298. https://doi.org/10.1172/JCI200422557

CAS  Article  PubMed  PubMed Central  Google Scholar 

Frisk G, Friman G, Tuvemo T, Fohlman J, Diderholm H (1992) Coxsackie B virus IgM in children at onset of type 1 (insulin-dependent) diabetes mellitus: evidence for IgM induction by a recent or current infection. Diabetologia 35(3):249–253. https://doi.org/10.1007/BF00400925

CAS  Article  PubMed  Google Scholar 

Samuelsson U, Johansson C, Carstensen J, Ludvigsson J (1994) Space–time clustering in insulin-dependent diabetes mellitus (IDDM) in south-East Sweden. Int J Epidemiol 23(1):138–142. https://doi.org/10.1093/ije/23.1.138

CAS  Article  PubMed  Google Scholar 

Krogvold L, Edwin B, Buanes T et al (2015) Detection of a low-grade enteroviral infection in the islets of Langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes 64:1682–1687. https://doi.org/10.2337/db14-1370

CAS  Article  PubMed  Google Scholar 

Ludvigsson J (2006) Why diabetes incidence increases – a unifying theory. Ann NY Acad Sci 1079(1):374–382. https://doi.org/10.1196/annals.1375.058

Article  PubMed  Google Scholar 

Lönnrot M, Lynch KF, Elding Larsson H et al (2017) Respiratory infections are temporally associated with initiation of type 1 diabetes autoimmunity: the TEDDY study. Diabetologia 60(10):1931–1940. https://doi.org/10.1007/s00125-017-4365-5

Article  PubMed  PubMed Central  Google Scholar 

Bélteky M, Wahlberg J, Ludvigsson J (2020) Maternal respiratory infections in early pregnancy increases the risk of type 1 diabetes. Pediatr Diabetes 21(7):1193–1201. https://doi.org/10.1111/pedi.13075

CAS  Article  PubMed  Google Scholar 

Coppieters KT, Wiberg A, Tracy SM, von Herrath MG (2012) Immunology in the clinic review series: focus on type 1 diabetes and viruses: the role of viruses in type 1 diabetes: a difficult dilemma. Clin Exp Immunol 168:5–11. https://doi.org/10.1111/j.1365-2249.2011.04554.x

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dedrick S, Sundaresh B, Huang Q et al (2020) The role of gut microbiota and environmental factors in type 1 diabetes pathogenesis. Front Endocrinol 11:78. https://doi.org/10.3389/fendo.2020.00078

Article  Google Scholar 

Cardwell CR, Carson DJ, Patterson CC (2008) No association between routinely recorded infections in early life and subsequent risk of childhood-onset type 1 diabetes: a matched case–control study using the UK General Practice Research Database. Diabet Med 25:261–267. https://doi.org/10.1111/j.1464-5491.2007.02351.x

CAS  Article  PubMed  Google Scholar 

TRIGR Study Group, Akerblom HK, Krischer J, Virtanen SM et al (2011) The Trial to Reduce IDDM in the Genetically at Risk (TRIGR) study: recruitment, intervention and follow-up. Diabetologia 54(3):627–633. https://doi.org/10.1007/s00125-010-1964-9

Article  Google Scholar 

Writing Group for the TRIGR Study Group, Knip M, Åkerblom HK, Al-Taji E et al (2018) Effect of hydrolyzed infant formula vs conventional formula on risk of type 1 diabetes: the TRIGR randomized clinical trial. JAMA 319(1):38–48. https://doi.org/10.1001/jama.2017.19826

Article  PubMed Central  Google Scholar 

Greenbaum CJ, Palmer JP, Nagataki S et al (1992) Improved specificity of ICA assays in the Fourth International Immunology of Diabetes Serum Exchange Workshop. Diabetes 12:1570–1574. https://doi.org/10.2337/diab.41.12.1570

Article  Google Scholar 

Knip M, Åkerblom HK, Becker D et al (2014) Hydrolyzed infant formula and early β-cell autoimmunity: a randomized clinical trial. JAMA 311(22):2279–2278. https://doi.org/10.1001/jama.2014.5610

CAS  Article  PubMed  PubMed Central  Google Scholar 

Parkkola A, Härkönen T, Ryhänen SJ, Ilonen J, Knip M (2013) Finnish Pediatric Diabetes Register. Extended family history of type 1 diabetes and phenotype and genotype of newly diagnosed children. Diabetes Care 36(2):348–354. https://doi.org/10.2337/dc12-0445

Article  PubMed  PubMed Central  Google Scholar 

Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications, part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15:539–553. https://doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S

CAS  Article  PubMed  Google Scholar 

Henrick BM, Yao XD, Nasser L, Roozrogousheh A, Rosenthal KL (2017) Breastfeeding behaviors and the innate immune system of human milk: working together to protect infants against inflammation, HIV-1, and other infections. Front Immunol 8:1631. https://doi.org/10.3389/fimmu.2017.01631

CAS  Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif