Potential Microbial Consortium Mitigates Drought Stress in Tomato (Solanum lycopersicum L.) Plant by Up-regulating Stress-Responsive Genes and Improving Fruit Yield and Soil Properties

Ahn TS, Ka JO, Lee GH, Song HG (2007) Microcosm study for revegetation of barren land with wild plants by some plant growth-promoting rhizobacteria. J Microbiol Biotechnol 17:52–57. https://pubmed.ncbi.nlm.nih.gov/18051353/

Abdul JC, Manivannan P, Sankar B, Kishorekumar A, Gopi R et al (2007) Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids Surf B 60:201–206. https://doi.org/10.1016/j.colsurfb.2007.05.012

CAS  Article  Google Scholar 

Amor NB, Hamed KB, Debez A, Grignon C, Abdelly C (2005) Physiological and antioxidant responses of the perennial halophyte Crithmummaritimum to salinity. Plant Sci 168:889–899. https://doi.org/10.1016/j.plantsci.2004.11.002

CAS  Article  Google Scholar 

Aneja VP, Nelson DR, Roelle PA, Walker JT, Battye W (2003) Agricultural ammonia emissions and ammonium concentrations associated with aerosols and precipitation in the southeast United States. J Geophys Res Atmos 108(D4). https://doi.org/10.1029/2002JD002271

Ansary MH, Rahmani HA, Ardakani MR, Paknejad F, Habibi D, Mafakheri S (2012) Effect of Pseudomonas fluorescens on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress. Ann Biol Res 3:1054–1062

CAS  Google Scholar 

Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620. https://doi.org/10.1016/S1002-0160(08)60055-7

Article  Google Scholar 

Bakr J, Daood H, Pék Z, Helyes L, Posta K (2017) Yield and quality of mycorrhized processing tomato under water scarcity. Appl Ecol Environ Res 15:401–413. https://doi.org/10.15666/aeer/1501_401413

Article  Google Scholar 

Bano A, Fatima M (2009) Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soils 45:405–413. https://doi.org/10.1007/s00374-008-0344-9

Article  Google Scholar 

Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. https://doi.org/10.1007/BF00018060

CAS  Article  Google Scholar 

Belimov A, Dodd I, Safronova V, Davies W, Andrews M, Andrews M (2009) ACC deaminasecontainingrhizobacteria improve vegetative developmentand yield of potato plants grown underwater-limited conditions. Asp Appl Biol 98:163–169

Google Scholar 

Benabdellah K, Abbas Y, Abourouh M, Aroca R, Azco’n R (2011) Influence of two bacterial isolates from degraded and non-degraded soils and arbuscularmycorrhizae fungi isolated from semiarid zone on the growth of Trifolium repensunder drought conditions: mechanisms related to bacterial effectiveness. Eur J Soil Biol 47:303–309. https://doi.org/10.1016/j.ejsobi.2011.07.004

Article  Google Scholar 

Bric JM, Bostock RMS, SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538. https://doi.org/10.1128/aem.57.2.535-538.1991

CAS  Article  PubMed  PubMed Central  Google Scholar 

Casida Jr LE, Klein DA, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98(6):371–376.https://journals.lww.com/soilsci/Fulltext/1964/12000/SOIL_DEHYDROGENASE_ACTIVITY.4.aspx

Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560. https://doi.org/10.1093/aob/mcn125

CAS  Article  PubMed  Google Scholar 

Chopra SL, Kanwar JS (1982) Analytical agricultural chemistry Kalyani Publishers. Ludhiana, India. http://www.worldcat.org/oclc/2980068

Durán P, Acuña JJ, Armada E, López-Castillo OM, Cornejo P, Mora ML, Azcón R (2016) Inoculation with selenobacteria and arbuscular mycorrhizal fungi to enhance selenium content in lettuce plants and improve tolerance against drought stress. J Soil Sci Plant Nutr 16:211–225. https://doi.org/10.4067/S0718-95162016005000017

Article  Google Scholar 

Eivazi F, Tabatabai MA (1977) Phosphatases in soils. Soil Biol Biochem 9(3):167–172. https://doi.org/10.1016/0038-0717(77)90070-0

CAS  Article  Google Scholar 

Etesami H, Adl SM (2020) Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. Phyto-Microbiome Stress Regul 147-203. https://doi.org/10.3389/fpls.2018.01473

FAO (2020) FAOSTAT [WWW Document]. URL http://www.fao.org/faostat/en/#home (accessed 15th June 2020)

Fazal A, Bano A (2016) Role of plant growth-promoting rhizobacteria (pgpr), biochar, and chemical fertilizer under salinity stress. Commun Soil Sci Plant Ana 47:1985–1993. https://doi.org/10.1080/00103624.2016.1216562

Franzini VI, Azco’n R, Mendes FL, Aroca R (2010) Interactions between Glomus species and Rhizobium strains affect the nutritional physiology of drought-stressed legume hosts. J Plant Physiol 167(8):614–619. https://doi.org/10.1016/j.jplph.2009.11.010

CAS  Article  PubMed  Google Scholar 

Ghorai S, Pal K, Dey R (2015) Alleviation of salinity stress in groundnut by application of PGPR. Internat Res J Engineer Tech 2(3):742–750

Google Scholar 

Ghorbanpour A, Salimi A, Ghanbary MAT, Pirdashti H, Dehestani A (2018) The effect of Trichoderma harzianum in mitigating low temperature stress in tomato (Solanum lycopersicum L.) plants. Sci Hortic 230:134–141. https://doi.org/10.1016/j.scienta.2017.11.028

Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

CAS  Article  PubMed  Google Scholar 

Gou W, Tian L, Ruan Z, Zheng PENG, Chen FUCAI et al (2015) Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (Zea mays) by three plant growth promoting rhizobacteria (PGPR) strains. Pak J Bot 47:581–586

CAS  Google Scholar 

Gusain YS, Singh U, Sharma A (2015) Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). Afr J Biotechnol 14:764–773. https://doi.org/10.5897/AJB2015.14405

Article  Google Scholar 

Habibi D, Moslemi Z, Ardakani M, Mohammadi A, Asgharzadeh A (2010) Effects of super absorbent polymer and plant growth promoting rhizobacteria (PGPR) on yield and oxidative damage of maize under drought stress, in: 2010 International Conference on Chemistry and Chemical Engineering. IEEE, pp. 253–257. https://doi.org/10.5897/AJAR10.462

Hanway JJ, Heidel H (1952) Soil analysis methods as used in Iowa state college soil testing laboratory. Iowa Agric 57:1–31

Google Scholar 

Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. https://doi.org/10.1016/0003-9861(68)90654-1

CAS  Article  PubMed  Google Scholar 

Heidari M, Golpayegani A (2012) Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J Saudi Soc Agric Sci 11:57–61. https://doi.org/10.1016/j.jssas.2011.09.001

Article  Google Scholar 

Jewell MC, Campbell BC, Godwin ID (2010) Transgenic plants for abiotic stress resistance. In Transgenic crop plants (pp. 67–132). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04812-8_2

Jha BK, Pragash MG, Cletus J, Raman G, Sakthivel N (2009) Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World J Microbiol Biotechnol 25:573–581. https://doi.org/10.1007/s11274-008-9925-x

CAS  Article  Google Scholar 

Kakar KU, Ren XL, Nawaz Z, Cui ZQ, Li B, Xie GL et al (2016) A consortium of rhizobacterial strains and biochemical growth elicitors improve cold and drought stress tolerance in rice (Oryza sativa L.). Plant Biol 18:471–483. https://doi.org/10.1111/plb.12427

CAS  Article  PubMed  Google Scholar 

Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6(1):68–72. https://doi.org/10.1007/BF00257924

CAS  Article  Google Scholar 

Kane KH (2011) Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the Mediterranean region. Envir Exp Bot 71:337–344. https://doi.org/10.1016/j.envexpbot.2011.01.002

Article  Google Scholar 

Karkute SG, Krishna R, Ansari WA, Singh B, Singh PM, Singh M, Singh AK (2019) Heterologous expression of the AtDREB1A gene in tomato confers tolerance to chilling stress. Biol Plant 63:268–277. https://doi.org/10.32615/bp.2019.031

CAS  Article  Google Scholar 

Kasim WA, Osman ME, Omar MN, El-Daim IAA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Regul 32:122–130. https://doi.org/10.1007/s00344-012-9283-7

CAS  Article  Google Scholar 

Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66:35–42. https://doi.org/10.1007/s13213-015-1112-3

CAS  Article  Google Scholar 

Khambani LS, Hassen AI, Regnier T (2019) Rhizospheric bacteria from pristine grassland have beneficial traits for plant growth promotion in maize (Zea mays L.). Cogent Biol 1630972. https://doi.org/10.1080/23312025.2019.1630972

Khare N, Goyary D, Singh NK, Shah P, Rathore M, Anandhan S, Sharma D, Arif M, Ahmed Z (2010) Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tissue Organ Cult 103(2):267–277. https://doi.org/10.1007/s11240-010-9776-7

CAS  Article  Google Scholar 

Kim K, Jang YJ, Lee SM, Oh BT, Chae JC, Lee KJ (2014) Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Mol Cells 37:109. https://doi.org/10.14348/2Fmolcells.2014.2239

Kohler J, Hernández JA, Caravaca F, Roldán A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151. https://doi.org/10.1071/FP07218

CAS  Article  PubMed  Google Scholar 

Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608. https://doi.org/10.1093/jxb/err460

CAS  Article  PubMed  Google Scholar 

Krishna R, Karkute SG, Ansari WA, Jaiswal DK, Verma JP, Singh M (2019a) Transgenic tomatoes for abiotic stress tolerance: status and way ahead. 3 Biotech 9:143. https://doi.org/10.1007/s13205-019-1665-0

Krishna R, Singh S, Gaurav AK, Jaiswal DK, Singh M, Verma JP (2021a) Rhizosphere soil microbiomes: As driver of agriculture commodity and industrial application. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 183–195). Elsevier. https://doi.org/10.1016/B978-0-444-64325-4.00016-X

Krishna R, Ansari WA, Jaiswal DK, Singh AK, Verma JP, Singh M (2021b) Co-overexpression of AtDREB1A and BcZAT12 increases drought tolerance and fruit production in double transgenic tomato (Solanum lycopersicum) plants. Environ Exp Bot 104396. https://doi.org/10.21203/rs.3.rs-378161/v1

Krishna R, Ansari WA, Verma JP, Singh M (2019b) Modern molecular and omics tools for understanding the plant growth-promoting rhizobacteria. In Role of plant growth promoting microorganisms in sustainable agriculture and nanotechnology (pp. 39–53). Woodhead Publishing. https://doi.org/10.3390/2Fmolecules21050573

Kuscu H, Turhan A, Ozmen N, Aydinol P, Demir AO (2014) Optimizing levels of water and nitrogen applied through drip irrigation for yield, quality, and water productivity of processing tomato (Lycopersicon esculentum Mill.). Hortic Environ Biotechnol 55:103–114. https://doi.org/10.1007/s13580-014-0180-9

CAS  Article  Google Scholar 

Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748. https://doi.org/10.1093/jxb/err210

CAS  Article  PubMed  Google Scholar 

Lata C, Yadav A, Prasad M (2011) Role of plant transcription factors in abiotic stress tolerance. Abiotic Stress Response in Plants, INTECH Open Access Publishers 10:269–296. https://doi.org/10.5772/23172

Article  Google Scholar 

Li L, Qian R, Wang W, Kang X, Ran Q, Zheng Z, Zhang B, Xu CC, R, Dong J, Xu Z, (2020) The intra-and inter-annual responses of soil respiration to climate extremes in a semiarid grassland. Geoderma 378:114629. https://doi.org/10.1016/j.geoderma.2020.114629

CAS  Article  Google Scholar 

Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29:201. https://doi.org/10.5423/2FPPJ.SI.02.2013.0021

Liu RZ, Jiang XL, Guan HS, Li XX, Du YS, et al (2009) Promotive effects of alginate-derived oligosaccharides on the Inducing drought resistance of tomato. J Ocean Univ China (Ocean Coastal Sea Res) 8:303–311. https://doi.org/10.1371/2Fjournal.pone.0052565

Lu S, Su W, Li H, Guo ZF (2009) Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiol Biochem 47:132–138. https://doi.org/10.1371/2Fjournal.pone.0052565

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

Lopes MS, Araus JL, Van Heerden PD, Foyer CH (2011) Enhancing drought tolerance in C4 crops. J Exp Bot 62:3135–3153. https://doi.org/10.1093/jxb/err105

CAS  Article  PubMed 

留言 (0)

沒有登入
gif