Discovering design principles for biological functionalities: Perspectives from systems biology

Ananthasubramaniam B and Hanspeter H 2014 Positive feedback promotes oscillations in negative feedback loops. PLoS One 9 e104761

PubMed  PubMed Central  Google Scholar 

Angeli D, Ferrell Jr and Sontag Ed 2004 Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. USA 101 1822–1827

Araujo R and Lance L 2018 The topological requirements for robust perfect adaptation in networks of any size. Nat. Commun. 9 1757–1769

PubMed  PubMed Central  Google Scholar 

Astrom K and Richard M 2010 Feedback systems: An introduction for scientists and engineers (Princeton University Press)

Barkai N and Stan L 1997 Robustness in simple biochemical networks. Nature 387 913–921

CAS  PubMed  Google Scholar 

Bernardo M and Tu Y 2003 Perfect and near-perfect adaptation in a model of bacterial chemotaxis. Biophys. J. 84 2943–2956

Google Scholar 

Bhattacharya P, Karthik R and Tangirala A 2018 A systems-theoretic approach towards designing biological networks for perfect adaptation. IFAC-PapersOnLine 51 307–312

Google Scholar 

Bhattacharya P, Karthik R and Tangirala A 2021 Systems-theoretic approaches to design biological networks with desired functionalities. Methods Mol. Biol. 2189 133–155

CAS  PubMed  Google Scholar 

Bhattacharya P, Karthik R and Tangirala A 2022 Discovering adaptation-capable biological network structures using control-theoretic approaches. PLOS Comp. Biol. 18 e1009769

CAS  Google Scholar 

Börsch A and Jörg S 2016 How time delay and network design shape response patterns in biochemical negative feedback systems. BMC Syst. Biol. 10 82–90

PubMed  PubMed Central  Google Scholar 

Briat C, Gupta A and Khammash M 2016 Antithetic integral feedback ensures robust perfect adaptation in noisy biomolecular networks. Cell Syst. 2 15–26

CAS  PubMed  Google Scholar 

Briat C, Gupta A and Khammash M 2018 Antithetic proportional-integral feedback for reduced variance and improved control performance of stochastic reaction networks. J. R. Soc. Interface 15 20180079

PubMed  PubMed Central  Google Scholar 

Cameron E, Bashor C and Collins J 2014 A brief history of synthetic biology. Nat. Rev. Microbiol. 12 381–390

CAS  PubMed  Google Scholar 

Chin C, Chubukov V, Jolly E, et al. 2008 Dynamics and design principles of a basic regulatory architecture controlling metabolic pathways. PLoS Biol. 6 1343–1356

CAS  Google Scholar 

Del D 2013 A control theoretic framework for modular analysis and design of bio-molecular networks. Annu. Rev. Control 37 333–345

Google Scholar 

Diegmiller R, Zhang L, Marcio G, et al. 2021 Mapping parameter spaces of biological switches. PLoS Comp. Biol. 17 e1008711

CAS  Google Scholar 

Drengstig T, Ueda H and Ruoff P 2008 Predicting perfect adaptation motifs in reaction kinetic networks. J. Phys. Chem. B 112 16752–16758

CAS  PubMed  Google Scholar 

Drengstig T, Kjosmoen T and Ruoff P 2011 On the relationship between sensitivity coefficients and transfer functions of reaction. J. Phys. Chem. B 115 6272–6278

CAS  PubMed  Google Scholar 

Dubnau D and Losick R 2006 Bistability in bacteria. Mol. Microbiol. 61 564–572

CAS  PubMed  Google Scholar 

El-Samad H 2021 Biological feedback control: respect the loops. Cell Syst. 12 477–487

CAS  PubMed  Google Scholar 

Fahrenkrug J, Birgitte G, Hannibal J, et al. 2006 Diurnal rhythmicity of the clock genes Per1 and Per2 in the rat ovary. Endocrinology 147 3769–3776

CAS  PubMed  Google Scholar 

Fangzhou X, Khammash M and Doyle J 2021 Stability and control of biomolecular circuits through structure. 2021 American Control Conference pp 476–483

Ferrell Jr 2016 Perfect and near-perfect adaptation in cell signaling. Cell Syst. 2 62–67

Fiedler B, Mochizuki A, Kurosawa G, et al. 2013 Dynamics and control at feedback vertex sets. I: Informative and determining nodes in regulatory networks. J. Dyn. Diff. Equat. 25 563–604

Google Scholar 

Frank F 1974 Kinetic feedback processes in physicochemical oscillatory systems. Faraday Symp. Chem. Soc. 9 137–149

Google Scholar 

Friedlander T and Brenner N 2009 Adaptive response by state-dependent inactivation. Proc. Natl. Acad. Sci. USA 106 22558–22563

CAS  PubMed  PubMed Central  Google Scholar 

Gardner S, Cantor C and Collins J 2000 Construction of a genetic toggle switch in Escherichia coli. Nature 403 339–342

CAS  PubMed  Google Scholar 

George S 2002 Role of optimal control theory in cancer chemotherapy. Math. Biosci. 101 237–284

Google Scholar 

Goldbeter A 2002 Computational approaches to cellular rhythms. Nature 420 238–245

CAS  PubMed  Google Scholar 

Goldbeter A and Lefever R 1972 Dissipative structures for an allosteric model. Application to Glycolytic Oscillations. Biophys. J. 12 1302–1315

CAS  PubMed  Google Scholar 

Goldbeter A 1996 Biochemical oscillations and cellular rhythms: The molecular bases of periodic and chaotic behavior (Cambridge University Press)

Griffith S 1968 Mathematics of cellular control processes. i. Negative feedback to one gene. J. Theor. Biol. 20 202–208

CAS  PubMed  Google Scholar 

Guantes R and Poyatos J 2008 Multistable decision switches for flexible control of epigenetic differentiation. PLoS Comp. Biol. 4 e1000235

Google Scholar 

Hardin E, Hall J and Rosbash M 1992 Circadian oscillations in period gene mRNA levels are transcriptionally regulated. Proc. Natl. Acad. Sci. USA 89 11711–11715

CAS  PubMed  PubMed Central  Google Scholar 

Hat B, Kochan C, Bogdal M, et al. 2016 Feedbacks, bifurcations and cell fate decision-making in the P53 system. PLoS Comp. Biol. 12 e1004787

Google Scholar 

Hespanha J and Sivakumar H 2013 Towards modularity in biological networks while avoiding retroactivity. Proceedings of the American Control Conference pp 4550–4556

Higgins J 1964 A chemical mechanism for oscillation of glycolytic intermediates in yeast cells. Proc. Natl. Acad. Sci. USA 51 989–994

CAS  PubMed  PubMed Central  Google Scholar 

Hinczewski M and Thirumalai D 2014 Cellular signaling networks function as generalized Wiener-Kolmogorov filters to suppress noise. Phys. Rev. X 4 04101701–04101715

Google Scholar 

Jacob F and Monod J 1961 Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3 318–356

CAS  PubMed  Google Scholar 

Jorge Z, Gang Y and Albert R 2017 Structure-based control of complex networks with nonlinear dynamics. Proc. Natl. Acad. Sci. USA 114 7234–7239

Google Scholar 

Joshi S, Sen S and Kar N 2020 Synchronization of master-slave oscillators: analysis and experimental results. IFAC-PapersOnLine 53 226–231

Khammash M 2021 Perfect adaptation in biology. Cell Syst. 12 509–521

CAS  PubMed  Google Scholar 

Königs V, Camila O, Freitas M, et al. 2020 Srsf7 maintains its homeostasis through the expression of Split-ORFs and nuclear body assembly. Nat. Struc. Mol. Biol. 27 260–273

Google Scholar 

Konopka K 2006 Systems biology: Principles, methods, and concepts (CRC Press)

Kulkarni V, Stan GB and Raman K 2014 A systems theoretic approach to systems and synthetic biology I: Models and system characterizations (Springer)

Laurent M and Nicolas K 1999 Multistability: A major means of differentiation and evolution in biological systems. Trends Biochem. Sci. 24 418–422

CAS  PubMed  Google Scholar 

Lazebnik Y 2002 Can a biologist fix a radio?—or, What I learned while studying apoptosis. Cancer Cell 2 179–182

CAS  PubMed  Google Scholar 

Leon M, Mae W,Alex F et al. 2016 A computational method for the investigation of multistable systems and its application to genetic switches. BMC Syst. Biol. 10 PMC5142341

Li Z, Liu S and Yang Q 2017 Incoherent inputs enhance the robustness of biological oscillators. Cell Syst. 5 72–81

CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Slotine J and Barabási A 2011 Controllability of complex networks. Nature 473 167–173

CAS  PubMed  Google Scholar 

Losick R and Desplan C 2008 Stochasticity and cell fate. Science 320 65–68

CAS  PubMed  PubMed Central  Google Scholar 

Lu J, Sherman D, Devor M, et al. 2006 A putative flip–flop switch for control of REM sleep. Nature 441 589–594

CAS  PubMed  Google Scholar 

Ma W, Trusina A, Hana S, et al. 2009 Defining Network topologies that can achieve biochemical adaptation. Cell Syst. 138 760–773

CAS  Google Scholar 

Ma’ayan A, Lipshtat A, Iyengar R, et al. 2008 Proximity of intracellular regulatory networks to monotone. IET Syst. Biol. 2 103–112

PubMed  Google Scholar 

Macarthur D, Ma’ayan A and Lemischka R, 2009 Systems biology of stem cell fate and cellular reprogramming. Nat. Rev. Mol. Cell Biol. 10 672–681

CAS  PubMed  PubMed Central  Google Scholar 

Mackey C and Glass L 1997 Oscillation and chaos in physiological control systems. Science 197 287–289

Google Scholar 

Maybee J, Driessche P, Olesky D, et al. 1989 Matrices, digraphs, and determinants. SIAM 10 500–519

Google Scholar 

Milo R, Shai O, Shalev I, et al. 2002 Network motifs: simple building blocks of complex networks. Science 298 824–827

CAS  PubMed  Google Scholar 

Novak B and Tyson J 1993 Numerical analysis of a comprehensive model of m-phase control in Xenopus oocyte extracts and intact embryos. Cell Sci. 106 153–168

Google Scholar 

Novak B and Tyson J 2008 Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9 981–991

CAS  PubMed  PubMed Central  Google Scholar 

Oberortner E, Bhatia S, Erik L, et al. 2015 A rule-based design specification language for synt

留言 (0)

沒有登入
gif