N-Acetyl Transferase, Shati/Nat8l, in the Dorsal Hippocampus Suppresses Aging-induced Impairment of Cognitive Function in Mice

Ni Y, Yang X, Zheng L, Wang Z, Wu L, Jiang J, Yang T, Ma L, Fu Z (2019) Lactobacillus and Bifidobacterium improves physiological function and cognitive ability in aged mice by the regulation of gut microbiota. Mol Nutr Food Res 63:e1900603. https://doi.org/10.1002/mnfr.201900603

CAS  Article  PubMed  Google Scholar 

Riaz M, Vangberg TR, Vasylenko O, Castro-Chavira S, Gorecka MM, Waterloo K, Rodríguez-Aranda C (2021) What does hand motor function tell us about our aging brain in association with WMH? Aging Clin Exp Res 33:1577–1584. https://doi.org/10.1007/s40520-020-01683-0

Article  PubMed  Google Scholar 

Anderson ND, Craik FI (2017) 50 years of cognitive aging theory. J Gerontol B Psychol Sci Soc Sci 72:1–6. https://doi.org/10.1093/geronb/gbw108

Article  PubMed  Google Scholar 

Sengoku R (2020) Aging and Alzheimer’s disease pathology. Neuropathology 40:22–29. https://doi.org/10.1111/neup.12626

Article  PubMed  Google Scholar 

Chauhan A, Chauhan V (2020) Beneficial effects of walnuts on cognition and brain health. Nutrients 12:550. https://doi.org/10.3390/nu12020550

CAS  Article  PubMed Central  Google Scholar 

Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, Ballard C, Banerjee S, Burns A, Cohen-Mansfield J, Cooper C, Fox N, Gitlin LN, Howard R, Kales HC, Larson EB, Ritchie K, Rockwood K, Sampson EL, Samus Q, Schneider LS, Selbæk G, Teri L, Mukadam N (2017) Dementia prevention, intervention, and care. Lancet 390:2673–2734. https://doi.org/10.1016/S0140-6736(17)31363-6

Article  PubMed  Google Scholar 

Russell JK, Jones CK, Newhouse PA (2019) The role of estrogen in brain and cognitive aging. Neurotherapeutics 16:649–665. https://doi.org/10.1007/s13311-019-00766-9

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zahodne LB, Zajacova A (2020) Education and cognitive aging: an introduction to the special section. J Gerontol B Psychol Sci Soc Sci 75:e78–e80. https://doi.org/10.1093/geronb/gbaa091

Article  PubMed  Google Scholar 

Bartsch T, Wulff P (2015) The hippocampus in aging and disease: from plasticity to vulnerability. Neuroscience 309:1–16. https://doi.org/10.1016/j.neuroscience.2015.07.084

CAS  Article  PubMed  Google Scholar 

Bettio LEB, Rajendran L, Gil-Mohapel J (2017) The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev 79:66–86. https://doi.org/10.1016/j.neubiorev.2017.04.030

Article  PubMed  Google Scholar 

Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, Rosoklija GB, Stankov A, Arango V, Dwork AJ, Hen R, Mann JJ (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22:589-599.e5. https://doi.org/10.1016/j.stem.2018.03.015

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jernigan TL, Archibald SL, Berhow MT, Sowell ER, Foster DS, Hesselink JR (1991) Cerebral structure on MRI, part I: localization of age-related changes. Biol Psychiatry 29:55–67. https://doi.org/10.1016/0006-3223(91)90210-d

CAS  Article  PubMed  Google Scholar 

Golomb J, de Leon MJ, Kluger A, George AE, Tarshish C, Ferris SH (1993) Hippocampal atrophy in normal aging. An association with recent memory impairment. Arch Neurol 50:967–973. https://doi.org/10.1001/archneur.1993.00540090066012

CAS  Article  PubMed  Google Scholar 

Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM, Caponio D, Dan X, Rocktäschel P, Croteau DL, Akbari M, Greig NH, Fladby T, Nilsen H, Cader MZ, Mattson MP, Tavernarakis N, Bohr VA (2019) Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 22:401–412. https://doi.org/10.1038/s41593-018-0332-9

CAS  Article  PubMed  PubMed Central  Google Scholar 

Foster TC (2006) Biological markers of age-related memory deficits: treatment of senescent physiology. CNS Drugs 20:153–166. https://doi.org/10.2165/00023210-200620020-00006

Article  PubMed  Google Scholar 

Poulose SM, Miller MG, Scott T, Shukitt-Hale B (2017) Nutritional factors affecting adult neurogenesis and cognitive function. Adv Nutr 8:804–811. https://doi.org/10.3945/an.117.016261

CAS  Article  PubMed  PubMed Central  Google Scholar 

Niwa M, Nitta A, Mizoguchi H, Ito Y, Noda Y, Nagai T, Nabeshima T (2007) A novel molecule “shati” is involved in methamphetamine-induced hyperlocomotion, sensitization, and conditioned place preference. J Neurosci 27:7604–7615. https://doi.org/10.1523/JNEUROSCI.1575-07.2007

CAS  Article  PubMed  PubMed Central  Google Scholar 

Haddar M, Uno K, Azuma K, Muramatsu SI, Nitta A (2020) Inhibitory effects of Shati/Nat8l overexpression in the medial prefrontal cortex on methamphetamine-induced conditioned place preference in mice. Addict Biol 25:e12749. https://doi.org/10.1111/adb.12749

Article  PubMed  Google Scholar 

Miyanishi H, Uno K, Iwata M, Kikuchi Y, Yamamori H, Yasuda Y, Ohi K, Hashimoto R, Hattori K, Yoshida S, Goto YI, Sumiyoshi T, Nitta A (2020) Investigating DNA methylation of SHATI/NAT8L promoter sites in blood of unmedicated patients with major depressive disorder. Biol Pharm Bull 43:1067–1072. https://doi.org/10.1248/bpb.b19-01099

CAS  Article  PubMed  Google Scholar 

Miyanishi H, Nitta A (2021) A role of BDNF in the depression pathogenesis and a potential target as antidepressant: the modulator of stress sensitivity “Shati/Nat8l-BDNF system” in the dorsal striatum. Pharmaceuticals (Basel) 14:889. https://doi.org/10.3390/ph14090889

CAS  Article  Google Scholar 

Nitta A, Noike H, Sumi K, Miyanishi H, Tanaka T, Takaoka K, Nagakura M, Iegaki N, Kaji JI, Miyamoto Y, Muramatsu SI, Uno K (2018) Shati/Nat8l and N-acetylaspartate (NAA) have important roles in regulating nicotinic acetylcholine receptors in neuronal and psychiatric diseases in animal models and humans. In: Akaike A, Shimohama S, Misu Y (eds) Nicotinic acetylcholine receptor signaling in neuroprotection. Springer, Singapore, pp 89–111

Chapter  Google Scholar 

Sumi K, Uno K, Noike H, Tomohiro T, Hatanaka Y, Furukawa-Hibi Y, Nabeshima T, Miyamoto Y, Nitta A (2017) Behavioral impairment in SHATI/NAT8L knockout mice via dysfunction of myelination development. Sci Rep 7:16872. https://doi.org/10.1038/s41598-017-17151-1

CAS  Article  PubMed  PubMed Central  Google Scholar 

Iida A, Takino N, Miyauchi H, Shimazaki K, Muramatsu S (2013) Systemic delivery of tyrosine-mutant AAV vectors results in robust transduction of neurons in adult mice. BioMed Res Int 2013:974819. https://doi.org/10.1155/2013/974819

CAS  Article  PubMed  PubMed Central  Google Scholar 

Krzyzosiak A, Szyszka-Niagolov M, Wietrzych M, Gobaille S, Muramatsu S, Krezel W (2010) Retinoid X receptor gamma control of affective behaviors involves dopaminergic signaling in mice. Neuron 66:908–920. https://doi.org/10.1016/j.neuron.2010.05.004

CAS  Article  PubMed  Google Scholar 

Paxinos G, Franklin KBJ (2008) The mouse brain in stereotaxic coordinates: Compact, 3rd edn. Elsevier, Amsterdam

Google Scholar 

Uno K, Miyanishi H, Sodeyama K, Fujiwara T, Miyazaki T, Muramatsu SI, Nitta A (2019) Vulnerability to depressive behavior induced by overexpression of striatal Shati/Nat8l via the serotonergic neuronal pathway in mice. Behav Brain Res 376:112227. https://doi.org/10.1016/j.bbr.2019.112227

CAS  Article  PubMed  Google Scholar 

Miyamoto Y, Iegaki N, Fu K, Ishikawa Y, Sumi K, Azuma S, Uno K, Muramatsu SI, Nitta A (2017) Striatal N-acetylaspartate synthetase Shati/Nat8l regulates depression-like behaviors via mGluR3-mediated serotonergic suppression in mice. Int J Neuropsychopharmacol 20:1027–1035. https://doi.org/10.1093/ijnp/pyx078

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fu K, Miyamoto Y, Sumi K, Saika E, Muramatsu SI, Uno K, Nitta A (2017) Overexpression of transmembrane protein 168 in the mouse nucleus accumbens induces anxiety and sensorimotor gating deficit. PLoS ONE 12:e0189006. https://doi.org/10.1371/journal.pone.0189006

CAS  Article  PubMed  PubMed Central  Google Scholar 

Miyamoto Y, Ishikawa Y, Iegaki N, Sumi K, Fu K, Sato K, Furukawa-Hibi Y, Muramatsu S, Nabeshima T, Uno K, Nitta A (2014) Overexpression of Shati/Nat8l, an N-acetyltransferase, in the nucleus accumbens attenuates the response to methamphetamine via activation of group II mGluRs in mice. Int J Neuropsychopharmacol 17:1283–1294. https://doi.org/10.1017/S146114571400011X

CAS  Article  PubMed  Google Scholar 

Haddar M, Azuma K, Izuo N, Kyosuke U, Asano T, Muramatsu SI, Nitta A (2021) Impairment of cognitive function induced by Shati/Nat8l overexpression in the prefrontal cortex of mice. Behav Brain Res 397:112938. https://doi.org/10.1016/j.bbr.2020.112938

CAS  Article  PubMed  Google Scholar 

Miyanishi H, Muramatsu SI, Nitta A (2021) Striatal Shati/Nat8l-BDNF pathways determine the sensitivity to social defeat stress in mice through epigenetic regulation. Neuropsychopharmacology 46:1594–1605. https://doi.org/10.1038/s41386-021-01033-2

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bolognin S, Buffelli M, Puoliväli J, Iqbal K (2014) Rescue of cognitive-aging by administration of a neurogenic and/or neurotrophic compound. Neurobiol Aging 35:2134–2146. https://doi.org/10.1016/j.neurobiolaging.2014.02.017

CAS  Article  PubMed  Google Scholar 

Budni J, Bellettini-Santos T, Mina F, Garcez ML, Zugno AI (2015) The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease. Aging Dis 6:331–341. https://doi.org/10.14336/AD.2015.0825

Article  PubMed  PubMed Central  Google Scholar 

Molinari C, Morsanuto V, Ruga S, Notte F, Farghali M, Galla R, Uberti F (2020) The role of BDNF on aging-modulation markers. Brain Sci 10:285. https://doi.org/10.3390/brainsci10050285

CAS  Article  PubMed Central  Google Scholar 

Patterson SL (2015) Immune dysregulation and cognitive vulnerability in the aging brain: interactions of microglia, IL-1beta, BDNF and synaptic plasticity. Neuropharmacology 96:11–18. https://doi.org/10.1016/j.neuropharm.2014.12.020

留言 (0)

沒有登入
gif