CaMKII: a central molecular organizer of synaptic plasticity, learning and memory

Lisman, J., Yasuda, R. & Raghavachari, S. Mechanisms of CaMKII action in long-term potentiation. Nat. Rev. Neurosci. 13, 169–182 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hell, J. W. CaMKII: claiming center stage in postsynaptic function and organization. Neuron 81, 249–265 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bayer, K. U. & Schulman, H. CaM kinase: still inspiring at 40. Neuron 103, 380–394 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chen, X. et al. Mass of the postsynaptic density and enumeration of three key molecules. Proc. Natl Acad. Sci. USA 102, 11551–11556 (2005).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sheng, M. & Hoogenraad, C. C. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem. 76, 823–847 (2007).

CAS  PubMed  Article  Google Scholar 

Erondu, N. E. & Kennedy, M. B. Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J. Neurosci. 5, 3270–3277 (1985).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kennedy, M. B., Bennett, M. K. & Erondu, N. E. Biochemical and immunochemical evidence that the ‘major postsynaptic density protein’ is a subunit of a calmodulin-dependent protein kinase. Proc. Natl Acad. Sci. USA 80, 7357–7361 (1983).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kim, K., Saneyoshi, T., Hosokawa, T., Okamoto, K. & Hayashi, Y. Interplay of enzymatic and structural functions of CaMKII in long-term potentiation. J. Neurochem. 139, 959–972 (2016).

CAS  PubMed  Article  Google Scholar 

Kelly, P. T., Shields, S., Conway, K., Yip, R. & Burgin, K. Developmental changes in calmodulin-kinase II activity at brain synaptic junctions: alterations in holoenzyme composition. J. Neurochem. 49, 1927–1940 (1987).

CAS  PubMed  Article  Google Scholar 

Coultrap, S. J. et al. Autonomous CaMKII mediates both LTP and LTD using a mechanism for differential substrate site selection. Cell Rep. 6, 431–437 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Küry, S. et al. De novo mutations in protein kinase genes CAMK2A and CAMK2B cause intellectual disability. Am. J. Hum. Genet. 101, 768–788 (2017).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Rhein, C. et al. Association of a CAMK2A genetic variant with logical memory performance and hippocampal volume in the elderly. Brain Res. Bull. 161, 13–20 (2020).

CAS  PubMed  Article  Google Scholar 

Chia, P. H. et al. A homozygous loss-of-function CAMK2A mutation causes growth delay, frequent seizures and severe intellectual disability. Elife 7, e32451 (2018).

PubMed  PubMed Central  Article  Google Scholar 

Akita, T. et al. De novo variants in CAMK2A and CAMK2B cause neurodevelopmental disorders. Ann. Clin. Transl. Neurol. 5, 280–296 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chao, L. H. et al. A mechanism for tunable autoinhibition in the structure of a human Ca2+/calmodulin-dependent kinase II holoenzyme. Cell 146, 732–745 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Myers, J. B. et al. The CaMKII holoenzyme structure in activation-competent conformations. Nat. Commun. 8, 15742 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bayer, K. U., Löhler, J., Schulman, H. & Harbers, K. Developmental expression of the CaM kinase II isoforms: ubiquitous γ- and δ-CaM kinase II are the early isoforms and most abundant in the developing nervous system. Mol. Brain Res. 70, 147–154 (1999).

CAS  PubMed  Article  Google Scholar 

Silva, A. J., Paylor, R., Wehner, J. M. & Tonegawa, S. Impaired spatial learning in α-calcium-calmodulin kinase II mutant mice. Science 257, 206–211 (1992).

CAS  PubMed  Article  Google Scholar 

Borgesius, N. Z. et al. βCaMKII plays a nonenzymatic role in hippocampal synaptic plasticity and learning by targeting αCaMKII to synapses. J. Neurosci. 31, 10141–10148 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ma, H. et al. γCaMKII shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell 159, 281–294 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

He, X. et al. Gating of hippocampal rhythms and memory by synaptic plasticity in inhibitory interneurons. Neuron 109, 1013–1028.e9 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rosenberg, O. S., Deindl, S., Sung, R. J., Nairn, A. C. & Kuriyan, J. Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell 123, 849–860 (2005).

CAS  PubMed  Article  Google Scholar 

Hanson, P. I., Meyer, T., Stryer, L. & Schulman, H. Dual role of calmodulin in autophosphorylation of multifunctional cam kinase may underlie decoding of calcium signals. Neuron 12, 943–956 (1994).

CAS  PubMed  Article  Google Scholar 

Braun, A. P. & Schulman, H. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu. Rev. Physiol. 57, 417–445 (1995).

CAS  PubMed  Article  Google Scholar 

Buard, I. et al. CaMKII ‘autonomy’ is required for initiating but not for maintaining neuronal long-term information storage. J. Neurosci. 30, 8214–8220 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioral memory. Nat. Neurosci. 3, 175–190 (2002).

CAS  Article  Google Scholar 

De Koninck, P. & Schulman, H. Sensitivity of CaMKII to the frequency of Ca2+ oscillations. Science 279, 227–230 (1998).

PubMed  Article  Google Scholar 

Meyer, T., Hanson, P. I., Stryer, L. & Schulman, H. Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science 256, 1199–1202 (1992).

CAS  PubMed  Article  Google Scholar 

Fujii, H. et al. Nonlinear decoding and asymmetric representation of neuronal input information by CaMKIIα and calcineurin. Cell Rep. 3, 978–987 (2013).

CAS  PubMed  Article  Google Scholar 

Hanson, P. I. & Schulman, H. Inhibitory autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase analyzed by site-directed mutagenesis. J. Biol. Chem. 267, 17216–17224 (1992).

CAS  PubMed  Article  Google Scholar 

Colbrans, R. J. & Soderling, T. R. Calcium/calmodulin-independent autophosphorylation sites of calcium/calmodulin-dependent protein kinase II. Studies on the effect of phosphorylation of threonine 305/306 and serine 314 on calmodulin binding using synthetic peptides. J. Biol. Chem. 265, 11213–11219 (1990).

Article  Google Scholar 

Lisman, J. E. & Zhabotinsky, A. M. A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 31, 191–201 (2001).

CAS  PubMed  Article  Google Scholar 

Urakubo, H., Sato, M., Ishii, S. & Kuroda, S. In vitro reconstitution of a CaMKII memory switch by an NMDA receptor-derived peptide. Biophys. J. 106, 1414–1420 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lee, S. J. R., Escobedo-Lozoya, Y., Szatmari, E. M. & Yasuda, R. Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458, 299–304 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chang, J. Y. et al. CaMKII autophosphorylation is necessary for optimal integration of Ca2+ signals during LTP induction, but not maintenance. Neuron 94, 800–808.e4 (2017). This work measures the activity of CaMKII in single dendritic spines with millisecond temporal resolution using the FRET sensor Camui. The CaMKII decay time constant was determined to be about 6 s; this time frame enables CaMKII to accumulate its activity over this period.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chen, H.-X., Otmakhov, N., Strack, S., Colbran, R. J. & Lisman, J. E. Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP? J. Neurophysiol. 85, 1368–1376 (2001).

CAS  PubMed  Article  Google Scholar 

Murakoshi, H. et al. Kinetics of endogenous CaMKII required for synaptic plasticity revealed by optogenetic kinase inhibitor. Neuron 94, 37–47.e5 (2017). This publication describes paAIP2, a photoinducible CaMKII inhibitor, and demons

留言 (0)

沒有登入
gif