Purine nucleoside phosphorylase as a target to treat age-associated lower urinary tract dysfunction

Gibson, W. & Wagg, A. Incontinence in the elderly, ‘normal’ ageing, or unaddressed pathology? Nat. Rev. Urol. 14, 440–447 (2017).

Article  PubMed  Google Scholar 

Pfisterer, M. H., Griffiths, D. J., Schaefer, W. & Resnick, N. M. The effect of age on lower urinary tract function: a study in women. J. Am. Geriatr. Soc. 54, 405–412 (2006).

Article  PubMed  Google Scholar 

Dubeau, C. E. The aging lower urinary tract. J. Urol. 175, S11–S15 (2006).

Article  PubMed  Google Scholar 

Chapple, C. R. et al. Lower urinary tract symptoms revisited: a broader clinical perspective. Eur. Urol. 54, 563–569 (2008).

Article  PubMed  Google Scholar 

McDonough, R. C. & Ryan, S. T. Diagnosis and management of lower urinary tract dysfunction. Surg. Clin. North Am. 96, 441–452 (2016).

Article  PubMed  Google Scholar 

Yoshimura, N. & Chancellor, M. B. Neurophysiology of lower urinary tract function and dysfunction. Rev. Urol. 5, S3–S10 (2003).

PubMed  PubMed Central  Google Scholar 

Jacobsen, S. J., Girman, C. J. & Lieber, M. M. Natural history of benign prostatic hyperplasia. Urology 58, 5–16 (2001).

CAS  Article  PubMed  Google Scholar 

Hansen, B. L. Lower urinary tract symptoms (LUTS) and sexual function in both sexes. Eur. Urol. 46, 229–334 (2004).

Article  PubMed  Google Scholar 

Azadzoi, K. M. & Siroky, M. B. Mechanisms of lower urinary tract symptoms in pelvic ischemia. J. Biochem. Pharmacol. Res. 1, 64–74 (2013).

PubMed  PubMed Central  Google Scholar 

Speich, J. E. et al. Are oxidative stress and ischemia significant causes of bladder damage leading to lower urinary tract dysfunction? Neurourol. Urodyn. 39, S16–S22 (2020).

Article  PubMed  Google Scholar 

Munro, D. & Treberg, J. R. A radical shift in perspective: mitochondria as regulators of reactive oxygen species. J. Exp. Biol. 220, 1170–1180 (2017).

Article  PubMed  Google Scholar 

Duchen, M. R. Mitochondria and calcium: from cell signaling to cell death. J. Physiol. 529, 57–68 (2000).

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bayir, H. & Kagan, V. E. Bench to bedside: mitochondrial injury, oxidative stress and apoptosis. Crit. Care 12, 206 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Cadenas, E. & Davies, K. J. Mitochondrial free radical generation, oxidative stress and aging. Free Rad. Biol. Med. 29, 222–230 (2000).

CAS  Article  PubMed  Google Scholar 

Effendi, W. I., Nagano, T., Kobayashi, K. & Nishimura, Y. Focusing on adenosine receptors as a potential targeted therapy in human diseases. Cells 9, 24 (2020).

Article  CAS  Google Scholar 

Jackson, E. K., Gillespie, D. G. & Mi, Z. 8-Aminoguanosine and 8-aminoguanine exert diuretic, natriuretic, glucosuric, and antihypertensive activity. J. Pharmacol. Exp. Ther. 359, 420–435 (2016).

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jackson, E. K. & Tofovic, S. P. Methods for treatment using small molecule potassium-sparing diuretics and natriuretics. US Patent No. 10,729,711 (2020).

Osborne, W. R. & Barton, R. W. A rat model of purine nucleoside phosphorylase deficiency. Immunology 59, 63–67 (1986).

CAS  PubMed  PubMed Central  Google Scholar 

Jackson, E. K. & Mi, Z. 8-Aminoguanosine exerts diuretic, natriuretic, and glucosuric activity via conversion to 8-aminoguanine, yet has direct antikaliuretic effects. J. Pharmacol. Exp. Ther. 363, 358–366 (2017).

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chern, J. W. et al. Nucleosides. 5. Synthesis of guanine and formycin B derivatives as potential inhibitors of purine nucleoside phosphorylase. J. Med. Chem. 36, 1024–1031 (1993).

CAS  Article  PubMed  Google Scholar 

Jackson, E. K., Mi, Z., Kleyman, T. R. & Cheng, D. 8-Aminoguanine induces diuresis, natriuresis, and glucosuria by inhibiting purine nucleoside phosphorylase and reduces potassium excretion by inhibiting Rac1. J. Am. Heart Assoc. 7, e010085 (2018).

CAS  Article  PubMed  PubMed Central  Google Scholar 

Shibata, S. et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat. Med. 14, 1370–1376 (2008).

CAS  Article  PubMed  Google Scholar 

Shibata, S. et al. Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor-dependent pathway. J. Clin. Invest. 121, 3233–3243 (2011).

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bzowska, A., Kulikowska, E. & Shugar, D. Purine nucleoside phosphorylases: properties, functions, and clinical aspects. Pharmacol. Ther. 88, 349–425 (2000).

CAS  Article  PubMed  Google Scholar 

Roberts, E. L., Newton, R. P. & Axford, A. T. Plasma purine nucleoside phosphorylase in cancer patients. Clin. Chim. Acta 344, 109–114 (2004).

CAS  Article  PubMed  Google Scholar 

Silva, R. G. et al. Purine nucleoside phosphorylase activity in rat cerebrospinal fluid. Neurochem. Res. 29, 1831–1835 (2004).

Article  PubMed  Google Scholar 

Bortolotti, M., Polito, L., Battelli, M. G. & Bolognesi, A. Xanthine oxidoreductase: one enzyme for multiple physiological tasks. Redox Biol. 41, 101882 (2021).

CAS  Article  PubMed  PubMed Central  Google Scholar 

Snyder, F. F., Yuan, R. G., Bin, J. C., Carter, K. L. & McKay, D. J. Human guanine deaminase: cloning, expression and characterisation. Adv. Exp. Med. Biol. 486, 111–114 (2000).

CAS  Article  PubMed  Google Scholar 

Birder, L. A. et al. Purine nucleoside phosphorylase inhibition ameliorates age-associated lower urinary tract dysfunctions. JCI Insight 5, 15 (2020).

Article  Google Scholar 

Haskó, G., Sitkovsky, M. V. & Szabó, C. Immunomodulatory and neuroprotective effects of inosine. Trends Pharmacol. Sci. 25, 152–157 (2004).

Article  CAS  PubMed  Google Scholar 

Bhattacharyya, S. et al. Oral inosine persistently elevates plasma antioxidant capacity in Parkinson’s disease. Mov. Disord. 31, 417–421 (2016).

CAS  Article  PubMed  Google Scholar 

Cipriani, S., Bakshi, R. & Schwarzschild, M. A. Protection by inosine in a cellular model of Parkinson’s disease. Neuroscience 274, 242–249 (2014).

CAS  Article  PubMed  Google Scholar 

Gelain, D. P. et al. Extracellular inosine is modulated by H2O2 and protects Sertoli cells against lipoperoxidation and cellular injury. Free Radic. Res. 38, 37–47 (2004).

CAS  Article  PubMed  Google Scholar 

Gudkov, S. V., Shtarkman, I. N., Smirnova, V. S., Chernikov, A. V. & Bruskov, V. I. Guanosine and inosine display antioxidant activity, protect DNA in vitro from oxidative damage induced by reactive oxygen species, and serve as radioprotectors in mice. Radiat. Res. 165, 538–545 (2006).

CAS  Article  PubMed  Google Scholar 

Ruhal, P. & Dhingra, D. Inosine improves cognitive function and decreases aging-induced oxidative stress and neuroinflammation in aged female rats. Inflammopharmacology 26, 1317–1329 (2018).

CAS  Article  PubMed  Google Scholar 

Teixeira, F. C. et al. Inosine protects against impairment of memory induced by experimental model of Alzheimer disease: a nucleoside with multitarget brain actions. Psychopharmacology 237, 811–823 (2020).

CAS  Article  PubMed  Google Scholar 

Bellaver, B. et al. Guanosine inhibits LPS-induced pro-inflammatory response and oxidative stress in hippocampal astrocytes through the heme oxygenase-1 pathway. Purinergic Signal. 11, 571–580 (2015).

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gerbatin, R. D. R. et al. Guanosine protects against traumatic brain injury-induced functional impairments and neuronal loss by modulating excitotoxicity, mitochondrial dysfunction, and inflammation. Mol. Neurobiol. 54, 7585–7596 (2017).

Article  CAS  PubMed  Google Scholar 

Hansel, G. et al. Guanosine protects against cortical focal ischemia. involvement of inflammatory response. Mol. Neurobiol. 52, 1791–1803 (2015).

CAS  Article  PubMed  Google Scholar 

Luo, Y. et al. Guanosine and uridine alleviate airway inflammation via inhibition of the MAPK and NF-kappaB signals in OVA-induced asthmatic mice. Pulm. Pharmacol. Ther. 69, 102049 (2021).

CAS  Article  PubMed  Google Scholar 

Zizzo, M. G. et al. Preventive effects of guanosine on intestinal inflammation in 2, 4-dinitrobenzene sulfonic acid (DNBS)-induced colitis in rats. Inflammopharmacology 27, 349–359 (2019).

CAS  Article 

留言 (0)

沒有登入
gif