Regulation of membrane protein structure and function by their lipid nano-environment

Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

CAS  PubMed  Article  Google Scholar 

Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).

CAS  PubMed  Article  Google Scholar 

Payandeh, J. & Volgraf, M. Ligand binding at the protein-lipid interface: strategic considerations for drug design. Nat. Rev. Drug Discov. 20, 710–722 (2021).

CAS  PubMed  Article  Google Scholar 

Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).

CAS  PubMed  Article  Google Scholar 

Capolupo, L. et al. Sphingolipids control dermal fibroblast heterogeneity. Science 376, eabh1623 (2022).

CAS  PubMed  Article  Google Scholar 

Symons, J. L. et al. Lipidomic atlas of mammalian cell membranes reveals hierarchical variation induced by culture conditions, subcellular membranes, and cell lineages. Soft Matter 17, 288–297 (2020).

Article  Google Scholar 

Levental, K. R. et al. omega-3 polyunsaturated fatty acids direct differentiation of the membrane phenotype in mesenchymal stem cells to potentiate osteogenesis. Sci. Adv. 3, eaao1193 (2017). Demonstrates that membrane lipidomes can be comprehensively remodelled by exogenous, dietary fatty acids and that these effects can modulate stem cell differentiation.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Han, X. Lipidomics for studying metabolism. Nat. Rev. Endocrinol. 12, 668–679 (2016).

CAS  PubMed  Article  Google Scholar 

Eiriksson, F. F. et al. Lipidomic study of cell lines reveals differences between breast cancer subtypes. PLoS One 15, e0231289 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Levental, K. R. et al. Lipidomic and biophysical homeostasis of mammalian membranes counteracts dietary lipid perturbations to maintain cellular fitness. Nat. Commun. 11, 1339 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Contreras, F. X. et al. Molecular recognition of a single sphingolipid species by a protein’s transmembrane domain. Nature 481, 525–529 (2012). Demonstration of the remarkable specificity of binding between a single-pass transmembrane domain and a particular sub-species of sphingomyelin.

CAS  PubMed  Article  Google Scholar 

Lemmon, M. A. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell. Biol. 9, 99–111 (2008).

CAS  PubMed  Article  Google Scholar 

Moravcevic, K., Oxley, C. L. & Lemmon, M. A. Conditional peripheral membrane proteins: facing up to limited specificity. Structure 20, 15–27 (2012).

CAS  PubMed  Article  Google Scholar 

Lee, A. G. How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta 1666, 62–87 (2004).

CAS  PubMed  Article  Google Scholar 

Barrera, N. P., Zhou, M. & Robinson, C. V. The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends Cell Biol. 23, 1–8 (2013).

CAS  PubMed  Article  Google Scholar 

Contreras, F. X., Ernst, A. M., Wieland, F. & Brugger, B. Specificity of intramembrane protein-lipid interactions. Cold Spring Harb. Perspect. Biol. 3, a004705 (2011).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Corradi, V. et al. Emerging diversity in lipid-protein interactions. Chem. Rev. 119, 5775–5848 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sych, T., Levental, K. R. & Sezgin, E. Lipid-protein interactions in plasma membrane organization and function. Annu. Rev. Biophys. 51, 135–156 (2022).

PubMed  Article  CAS  Google Scholar 

Ernst, M. & Robertson, J. L. The role of the membrane in transporter folding and activity. J. Mol. Biol. 433, 167103 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Simunovic, M., Prevost, C., Callan-Jones, A. & Bassereau, P. Physical basis of some membrane shaping mechanisms. Philos. Trans. A Math. Phys. Eng. Sci. 374, 20160034 (2016).

PubMed  PubMed Central  Google Scholar 

Phillips, R., Ursell, T., Wiggins, P. & Sens, P. Emerging roles for lipids in shaping membrane-protein function. Nature 459, 379–385 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Heberle, F. A. et al. Direct label-free imaging of nanodomains in biomimetic and biological membranes by cryogenic electron microscopy. Proc. Natl Acad. Sci. USA 117, 19943–19952 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mitra, K., Ubarretxena-Belandia, I., Taguchi, T., Warren, G. & Engelman, D. M. Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc. Natl Acad. Sci. USA 101, 4083–4088 (2004).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cornell, C. E., Mileant, A., Thakkar, N., Lee, K. K. & Keller, S. L. Direct imaging of liquid domains in membranes by cryo-electron tomography. Proc. Natl Acad. Sci. USA 117, 19713–19719 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fischer, T. D., Dash, P. K., Liu, J. & Waxham, M. N. Morphology of mitochondria in spatially restricted axons revealed by cryo-electron tomography. PLoS Biol. 16, e2006169 (2018).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Andersen, O. S. & Koeppe, R. E. 2nd Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36, 107–130 (2007).

CAS  PubMed  Article  Google Scholar 

Falzone, M. E. et al. TMEM16 scramblases thin the membrane to enable lipid scrambling. Nat. Commun. 13, 2604 (2022).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kaiser, H.-J. et al. Lateral sorting in model membranes by cholesterol-mediated hydrophobic matching. Proc. Natl Acad. Sci. USA 108, 16628–16633 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chadda, R. et al. Membrane transporter dimerization driven by differential lipid solvation energetics of dissociated and associated states. eLife 10, e63288 (2021). Unique biochemical approaches are combined with simulations to show that IMP oligomerization is mediated by the energetics of TMD solvation by lipids rather than by direct lipid binding.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Beaven, A. H. et al. Gramicidin A channel formation induces local lipid redistribution I: experiment and simulation. Biophys. J. 112, 1185–1197 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sharpe, H. J., Stevens, T. J. & Munro, S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142, 158–169 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Diaz-Rohrer, B., Levental, K. R. & Levental, I. Rafting through traffic: membrane domains in cellular logistics. Biochim. Biophys. Acta Biomembr. 1838, 3003–3013 (2014).

CAS  Article  Google Scholar 

Prasad, R., Sliwa-Gonzalez, A. & Barral, Y. Mapping bilayer thickness in the ER membrane. Sci. Adv. 6, aba5130 (2020).

Article  Google Scholar 

Zhemkov, V. et al. The role of sigma 1 receptor in organization of endoplasmic reticulum signaling microdomains. eLife 10, e65192 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

King, C., Sengupta, P., Seo, A. Y. & Lippincott-Schwartz, J. ER membranes exhibit phase behavior at sites of organelle contact. Proc. Natl Acad. Sci. USA 117, 7225–7235 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cornelius, F. Modulation of Na,K-ATPase and Na-ATPase activity by phospholipids and cholesterol. I. Steady-state kinetics. Biochemistry 40, 8842–8851 (2001).

CAS  PubMed  Article  Google Scholar 

Lee, A. G. Lipid-protein interactions in biological membranes: a structural perspective. Biochim. Biophys. Acta 1612, 1–40 (2003).

CAS  PubMed  Article  Google Scholar 

Botelho, A. V., Huber, T., Sakmar, T. P. & Brown, M. F. Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes. Biophys. J. 91, 4464–4477 (2006).

CAS 

留言 (0)

沒有登入
gif