Aneuploidy in mammalian oocytes and the impact of maternal ageing

Gruhn, J. R. et al. Chromosome errors in human eggs shape natural fertility over reproductive life span. Science 365, 1466–1469 (2019). Aneuploidy rates in human oocytes exhibit a U-shaped relationship with respect to maternal age where chromosomes and the types of errors they experience are revealed to be different in young and older oocytes.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hou, Y. et al. Genome analyses of single human oocytes. Cell 155, 1492–1506 (2013).

CAS  PubMed  Article  Google Scholar 

Ottolini, C. S. et al. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat. Genet. 47, 727–735 (2015). First identification of the ‘reverse segregation’ type error in human oocytes, when the sister chromatids of a bivalent separate like in mitosis during meiosis I.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bell, A. D. et al. Insights into variation in meiosis from 31,228 human sperm genomes. Nature 583, 259–264 (2020).

CAS  PubMed  Article  Google Scholar 

Lu, S. et al. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science 338, 1627–1630 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang, J., Fan, H. C., Behr, B. & Quake, S. R. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150, 402–412 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cimini, D., Tanzarella, C. & Degrassi, F. Differences in malsegregation rates obtained by scoring ana-telophases or binucleate cells. Mutagenesis 14, 563–568 (1999).

CAS  PubMed  Article  Google Scholar 

Thompson, S. L. & Compton, D. A. Chromosome missegregation in human cells arises through specific types of kinetochore-microtubule attachment errors. Proc. Natl Acad. Sci. USA 108, 17974–17978 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Knouse, K. A., Wu, J., Whittaker, C. A. & Amon, A. Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc. Natl Acad. Sci. USA 111, 13409–13414 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pacchierotti, F., Adler, I. D., Eichenlaub-Ritter, U. & Mailhes, J. B. Gender effects on the incidence of aneuploidy in mammalian germ cells. Environ. Res. 104, 46–69 (2007).

CAS  PubMed  Article  Google Scholar 

Templado, C., Vidal, F. & Estop, A. Aneuploidy in human spermatozoa. Cytogenet. Genome Res. 133, 91–99 (2011).

CAS  PubMed  Article  Google Scholar 

Magli, M. C. et al. Paternal contribution to aneuploidy in preimplantation embryos. Reprod. Biomed. Online 18, 536–542 (2009).

CAS  PubMed  Article  Google Scholar 

Tang, W. W. C., Kobayashi, T., Irie, N., Dietmann, S. & Surani, M. A. Specification and epigenetic programming of the human germ line. Nat. Rev. Genet. 17, 585–600 (2016).

CAS  PubMed  Article  Google Scholar 

Haering, C. H., Farcas, A. M., Arumugam, P., Metson, J. & Nasmyth, K. The cohesin ring concatenates sister DNA molecules. Nature 454, 297–301 (2008).

CAS  PubMed  Article  Google Scholar 

Burkhardt, S. et al. Chromosome cohesion established by Rec8-cohesin in fetal oocytes is maintained without detectable turnover in oocytes arrested for months in mice. Curr. Biol. 26, 678–685 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tachibana-Konwalski, K. et al. Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes. Genes Dev. 24, 2505–2516 (2010). Alongside Burkhardt et al.15, this study demonstrates that REC8-containing cohesin is not re-installed along chromosomes after S-phase of PGC establishment in fetal development.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Láscarez-Lagunas, L., Martinez-Garcia, M. & Colaiácovo, M. SnapShot: meiosis – prophase I. Cell 181, 1442–1442.e1 (2020).

PubMed  Article  CAS  Google Scholar 

Alleva, B. & Smolikove, S. Moving and stopping: regulation of chromosome movement to promote meiotic chromosome pairing and synapsis. Nucleus 8, 613–624 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Park, S. U., Walsh, L. & Berkowitz, K. M. Mechanisms of ovarian aging. Reproduction 162, R19–R33 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Williams, C. J. & Erickson, G. F. In Morphology and Physiology of the Ovary (Endotext, 2000).

Li, R. & Albertini, D. F. The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat. Rev. Mol. Cell Biol. 14, 141–152 (2013).

CAS  PubMed  Article  Google Scholar 

Anderson, E. & Albertini, D. F. Gap junctions between the oocyte and companion follicle cells in the mammalian ovary. J. Cell Biol. 71, 680–686 (1976).

CAS  PubMed  Article  Google Scholar 

Hutt, K. J. & Albertini, D. F. An oocentric view of folliculogenesis and embryogenesis. Reprod. Biomed. Online 14, 758–764 (2007).

CAS  PubMed  Article  Google Scholar 

Kitajima, T. S., Ohsugi, M. & Ellenberg, J. Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes. Cell 146, 568–581 (2011).

CAS  PubMed  Article  Google Scholar 

Terret, M. E. et al. The meiosis I-to-meiosis II transition in mouse oocytes requires separase activity. Curr. Biol. 13, 1797–1802 (2003).

CAS  PubMed  Article  Google Scholar 

Holubcová, Z., Blayney, M., Elder, K. & Schuh, M. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science 5, 1143–1147 (2015). Alongside Haverfield et al.47, live imaging of human oocytes undergoing meiotic division reveals instability of meiotic spindles and incorrect kinetochore–microtubule attachments that promote aneuploidy.

Article  CAS  Google Scholar 

Tyc, K. M., McCoy, R. C., Schindler, K. & Xing, J. Mathematical modeling of human oocyte aneuploidy. Proc. Natl Acad. Sci. USA 117, 10455–10464 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Clift, D. & Marston, A. L. The role of shugoshin in meiotic chromosome segregation. Cytogenet. Genome Res. 133, 234–242 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Keating, L., Touati, S. A. & Wassmann, K. A PP2A-B56-centered view on metaphase-to-anaphase transition in mouse oocyte meiosis I. Cells 9, 390 (2020).

CAS  PubMed Central  Article  Google Scholar 

Marston, A. L. Shugoshins: tension-sensitive pericentromeric adaptors safeguarding chromosome segregation. Mol. Cell. Biol. 35, 634–648 (2015).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Chaigne, A. et al. F-actin mechanics control spindle centring in the mouse zygote. Nat. Commun. 7, 10253 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Scheffler, K. et al. Two mechanisms drive pronuclear migration in mouse zygotes. Nat. Commun. 12, 841 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Reichmann, J. et al. Dual-spindle formation in zygotes keeps parental genomes apart in early mammalian embryos. Science 361, 189–193 (2018).

CAS  PubMed  Article  Google Scholar 

Schulz, K. N. & Harrison, M. M. Mechanisms regulating zygotic genome activation. Nat. Rev. Genet. 20, 221–234 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nagaoka, S. I., Hassold, T. J. & Hunt, P. A. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 13, 493–504 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Dumont, J. et al. A centriole- and RanGTP-independent spindle assembly pathway in meiosis I of vertebrate oocytes. J. Cell Biol. 176, 295–305 (2007).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Schuh, M. & Ellenberg, J. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130, 484–498 (2007).

CAS  PubMed  Article  Google Scholar 

Szollosi, D., Calarco, P. & Donahue, R. P. Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J. Cell Sci. 11, 521–541 (1972).

CAS 

留言 (0)

沒有登入
gif