Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure

McDonagh, T. A. et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 24, 4–131 (2022).

Article  Google Scholar 

Hartupee, J. & Mann, D. L. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardiol. 14, 30–38 (2017).

CAS  PubMed  Article  Google Scholar 

Cohn, J. N. et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med. 311, 819–823 (1984).

CAS  PubMed  Article  Google Scholar 

El-Armouche, A. & Eschenhagen, T. β-Adrenergic stimulation and myocardial function in the failing heart. Heart Fail. Rev. 14, 225–241 (2009).

CAS  PubMed  Article  Google Scholar 

McMurray, J. J. et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993–1004 (2014).

PubMed  Article  CAS  Google Scholar 

Armstrong, P. W. et al. Vericiguat in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 382, 1883–1893 (2020).

CAS  PubMed  Article  Google Scholar 

Petraina, A. et al. Cyclic GMP modulating drugs in cardiovascular diseases: Mechanism-based network pharmacology. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvab240 (2021).

Article  PubMed Central  Google Scholar 

Anton, S. E. et al. Receptor-associated independent cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling. Cell 185, 1130–1142 (2022).

CAS  PubMed  Article  Google Scholar 

Bock, A. et al. Optical mapping of cAMP signaling at the nanometer scale. Cell 182, 1519–1530 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kokkonen, K. & Kass, D. A. Nanodomain regulation of cardiac cyclic nucleotide signaling by phosphodiesterases. Annu. Rev. Pharmacol. Toxicol. 57, 455–479 (2017).

CAS  PubMed  Article  Google Scholar 

Lohse, M. J., Engelhardt, S. & Eschenhagen, T. What is the role of β-adrenergic signaling in heart failure? Circ. Res. 93, 896–906 (2003).

CAS  PubMed  Article  Google Scholar 

Nikolaev, V. O. et al. β2-Adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327, 1653–1657 (2010).

CAS  PubMed  Article  Google Scholar 

Katz, S. D. et al. Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation 111, 310–314 (2005).

PubMed  Article  Google Scholar 

Dickey, D. M., Dries, D. L., Margulies, K. B. & Potter, L. R. Guanylyl cyclase (GC)-A and GC-B activities in ventricles and cardiomyocytes from failed and non-failed human hearts: GC-A is inactive in the failed cardiomyocyte. J. Mol. Cell Cardiol. 52, 727–732 (2012).

CAS  PubMed  Article  Google Scholar 

Packer, M. et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N. Engl. J. Med. 325, 1468–1475 (1991).

CAS  PubMed  Article  Google Scholar 

Redfield, M. M. et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309, 1268–1277 (2013).

CAS  PubMed  Article  Google Scholar 

Preedy, M. E. J. Cardiac cyclic nucleotide phosphodiesterases: roles and therapeutic potential in heart failure. Cardiovasc. Drugs Ther. 34, 401–417 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chen, S. & Yan, C. An update of cyclic nucleotide phosphodiesterase as a target for cardiac diseases. Expert Opin. Drug Discov. 16, 183–196 (2021).

CAS  PubMed  Article  Google Scholar 

Boivin, B. et al. Functional β-adrenergic receptor signalling on nuclear membranes in adult rat and mouse ventricular cardiomyocytes. Cardiovasc. Res. 71, 69–78 (2006).

CAS  PubMed  Article  Google Scholar 

Nash, C. A., Wei, W., Irannejad, R. & Smrcka, A. V. Golgi localized β1-adrenergic receptors stimulate Golgi PI4P hydrolysis by PLCe to regulate cardiac hypertrophy. Elife 8, e48167 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang, Y. et al. Intracellular β1-adrenergic receptors and organic cation transporter 3 mediate phospholamban phosphorylation to enhance cardiac contractility. Circ. Res. 128, 246–261 (2021).

CAS  PubMed  Article  Google Scholar 

Guellich, A., Mehel, H. & Fischmeister, R. Cyclic AMP synthesis and hydrolysis in the normal and failing heart. Pflügers Arch. 466, 1163–1175 (2014).

CAS  PubMed  Article  Google Scholar 

Xiang, Y., Rybin, V. O., Steinberg, S. F. & Kobilka, B. Caveolar localization dictates physiologic signaling of β2-adrenoceptors in neonatal cardiac myocytes. J. Biol. Chem. 277, 34280–34286 (2002).

CAS  PubMed  Article  Google Scholar 

Ostrom, R. S. et al. Receptor number and caveolar co-localization determine receptor coupling efficiency to adenylyl cyclase. J. Biol. Chem. 276, 42063–42069 (2001).

CAS  PubMed  Article  Google Scholar 

Rybin, V. O., Xu, X., Lisanti, M. P. & Steinberg, S. F. Differential targeting of β-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae: a mechanism to functionally regulate the cAMP signaling pathway. J. Biol. Chem. 275, 41447–41457 (2000).

CAS  PubMed  Article  Google Scholar 

Timofeyev, V. et al. Adenylyl cyclase subtype-specific compartmentalization: differential regulation of L-type Ca2+ current in ventricular myocytes. Circ. Res. 112, 1567–1576 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang, Z. et al. A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death. Cell Death Dis. 7, e2198 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Di Benedetto, G., Scalzotto, E., Mongillo, M. & Pozzan, T. Mitochondrial Ca2+ uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. Cell Metab. 17, 965–975 (2013).

PubMed  Article  CAS  Google Scholar 

Zhang, Y. et al. Cardiomyocyte PKA ablation enhances basal contractility while eliminates cardiac β-adrenergic response without adverse effects on the heart. Circ. Res. 12, 1760–1777 (2019).

Article  CAS  Google Scholar 

Liu, G. et al. Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics. Nature 577, 695–700 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Leroy, J. & Fischmeister, R. β-Adrenergic regulation of the L-type Ca2+ current: the missing link eventually discovered. Med. Sci. 36, 569–572 (2020).

Google Scholar 

Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002).

CAS  PubMed  Article  Google Scholar 

Hayes, J. S., Brunton, L. L., Brown, J. H., Reese, J. B. & Mayer, S. E. Hormonally specific expression of cardiac protein kinase activity. Proc. Natl Acad. Sci. USA 76, 1570–1574 (1979).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lehmann, L. H. et al. A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway. Nat. Med. 24, 62–72 (2018).

CAS  PubMed  Article  Google Scholar 

Chang, C. W. et al. Acute β-adrenergic activation triggers nuclear import of histone deacetylase 5 and delays Gq-induced transcriptional activation. J. Biol. Chem. 288, 192–204 (2013).

CAS  PubMed  Article  Google Scholar 

Ha, C. H. et al. PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy. Proc. Natl Acad. Sci. USA 107, 15467–15472 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Backs, J. et al. Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4. J. Cell Biol. 195, 403–415 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Antos, C. L. et al. Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase A. Circ. Res. 89, 997–1004 (2001).

CAS  PubMed  Article  Google Scholar 

Zhang, X. et al. Cardiotoxic and cardioprotective features of chronic β-adrenergic signaling. Circ. Res. 112, 498–509 (2013).

CAS  PubMed 

留言 (0)

沒有登入
gif