Branched-chain amino acids in cardiovascular disease

Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

PubMed  Article  CAS  Google Scholar 

Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).

CAS  PubMed  Article  Google Scholar 

Wolfson, R. L. et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43–48 (2016).

CAS  PubMed  Article  Google Scholar 

Felig, P., Marliss, E. & Cahill, G. F. Plasma amino acid levels and insulin secretion in obesity. N. Engl. J. Med. 281, 811–816 (1969).

CAS  PubMed  Article  Google Scholar 

White, P. J. & Newgard, C. B. Branched-chain amino acids in disease. Science 363, 582–583 (2019).

CAS  PubMed  Article  Google Scholar 

White, P. J. et al. Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street. Mol. Metab. 52, 101261 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hunter, W. G. et al. Metabolomic profiling identifies novel circulating biomarkers of mitochondrial dysfunction differentially elevated in heart failure with preserved versus reduced ejection fraction: evidence for shared metabolic impairments in clinical heart failure. J. Am. Heart Assoc. 5, e003190 (2016).

PubMed  PubMed Central  Article  Google Scholar 

Lanfear, D. E. et al. Targeted metabolomic profiling of plasma and survival in heart failure patients. JACC Heart Fail. 5, 823–832 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Sun, H. et al. Catabolic defect of branched-chain amino acids promotes heart failure. Circulation 133, 2038–2049 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Shah, S. H. et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ. Cardiovasc. Genet. 3, 207–214 (2010).

CAS  PubMed  Article  Google Scholar 

Bhattacharya, S. et al. Validation of the association between a branched chain amino acid metabolite profile and extremes of coronary artery disease in patients referred for cardiac catheterization. Atherosclerosis 232, 191–196 (2014).

CAS  PubMed  Article  Google Scholar 

Flores-Guerrero, J. L. et al. Concentration of branched-chain amino acids is a strong risk marker for incident hypertension. Hypertension 74, 1428–1435 (2019).

CAS  PubMed  Article  Google Scholar 

Portero, V. et al. Chronically elevated branched chain amino acid levels are pro-arrhythmic. Cardiovasc. Res. 118, 1742–1757 (2022).

CAS  PubMed  Article  Google Scholar 

Jang, C. et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat. Med. 22, 421–426 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Green, C. R. et al. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat. Chem. Biol. 12, 15–21 (2016).

CAS  PubMed  Article  Google Scholar 

Yoneshiro, T. et al. BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature 572, 614–619 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Walejko, J. M. et al. Branched-chain α-ketoacids are preferentially reaminated and activate protein synthesis in the heart. Nat. Commun. 12, 1680 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Neinast, M. D. et al. Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab. 29, 417–429.e4 (2019).

CAS  PubMed  Article  Google Scholar 

Fillmore, N., Wagg, C. S., Zhang, L., Fukushima, A. & Lopaschuk, G. D. Cardiac branched-chain amino acid oxidation is reduced during insulin resistance in the heart. Am. J. Physiol. Endocrinol. Metab. 315, E1046–E1052 (2018).

CAS  PubMed  Article  Google Scholar 

Nishi, K. et al. Branched-chain keto acid inhibits mitochondrial pyruvate carrier and suppresses gluconeogenesis. SSRN Electron. J. https://doi.org/10.2139/ssrn.4022706 (2022).

Article  Google Scholar 

Li, R. et al. Time series characteristics of serum branched-chain amino acids for early diagnosis of chronic heart failure. J. Proteome Res. 18, 2121–2128 (2019).

CAS  PubMed  Article  Google Scholar 

Wang, W. et al. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 311, H1160–H1169 (2016).

PubMed  Article  Google Scholar 

Uddin, G. M. et al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc. Diabetol. 18, 86 (2019).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Sansbury, B. E. et al. Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. Circ. Heart Fail. 7, 634–642 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Spyropoulos, F. et al. Metabolomic and transcriptomic signatures of chemogenetic heart failure. Am. J. Physiol. Heart Circ. Physiol. 322, H451–H465 (2022).

CAS  PubMed  Article  Google Scholar 

Lai, L. et al. Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach. Circ. Heart Fail. 7, 1022–1031 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kwon, H. K., Jeong, H., Hwang, D. & Park, Z. Y. Comparative proteomic analysis of mouse models of pathological and physiological cardiac hypertrophy, with selection of biomarkers of pathological hypertrophy by integrative proteogenomics. Biochim. Biophys. acta Proteins Proteom. 1866, 1043–1054 (2018).

CAS  Article  Google Scholar 

Lu, G. et al. Protein phosphatase 2Cm is a critical regulator of branched-chain amino acid catabolism in mice and cultured cells. J. Clin. Invest. 119, 1678–1687 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tso, S.-C. et al. Benzothiophene carboxylate derivatives as novel allosteric inhibitors of branched-chain α-ketoacid dehydrogenase kinase. J. Biol. Chem. 289, 20583–20593 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

White, P. J. et al. The BCKDH kinase and phosphatase integrate BCAA and lipid metabolism via regulation of ATP-citrate lyase. Cell Metab. 27, 1281–1293.e7 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chen, M. et al. Therapeutic effect of targeting branched-chain amino acid catabolic flux in pressure-overload induced heart failure. J. Am. Heart Assoc. 8, e011625 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sciarretta, S., Forte, M., Frati, G. & Sadoshima, J. New insights into the role of mTOR signaling in the cardiovascular system. Circ. Res. 122, 489–505 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bueno, O. F. et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 19, 6341–6350 (2000).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang, L. et al. KLF15 establishes the landscape of diurnal expression in the heart. Cell Rep. 13, 2368–2375 (2015).

CAS  PubMed  Article  Google Scholar 

Crnko, S., Du Pré, B. C., Sluijter, J. P. G. & Van Laake, L. W. Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nat. Rev. Cardiol. 16, 437–447 (2019).

PubMed  Article  Google Scholar 

McGinnis, G. R. et al. Genetic disruption of the cardiomyocyte circadian clock differentially influences insulin-mediated processes in the heart. J. Mol. Cell. Cardiol. 110, 80–95 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Latimer, M. N. et al. Branched chain amino acids selectively promote cardiac growth at the end of the awake period. J. Mol. Cell. Cardiol. 157, 31–44 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fan, L., Hsieh, P. N., Sweet, D. R. & Jain, M. K. Krüppel-like factor 15: regulator of BCAA metabolism and circadian protein rhythmicity. Pharmacol. Res. 130, 123–126 (2018).

CAS 

留言 (0)

沒有登入
gif