Redox regulation of the immune response

Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 2014;32:659–702.

CAS  PubMed  Article  Google Scholar 

Zettel K, Korff S, Zamora R, Morelli AE, Darwiche S, Loughran PA, et al. Toll-like receptor 4 on both myeloid cells and dendritic cells is required for systemic inflammation and organ damage after hemorrhagic shock with tissue trauma in mice. Front Immunol. 2017;8:1672.

Kim ND, Luster AD. The role of tissue resident cells in neutrophil recruitment. Trends Immunol. 2015;36:547–55.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Marcinkiewicz J, Walczewska M. Neutrophils as sentinel cells of the immune system: a role of the MPO-halide-system in innate and adaptive immunity. Curr Medicinal Chem. 2020;27:2840–51.

CAS  Article  Google Scholar 

Morris G, Bortolasci CC, Puri BK, Olive L, Marx W, O'Neil A, et al. Preventing the development of severe COVID-19 by modifying immunothrombosis. Life Sci. 2021;264:118617.

CAS  PubMed  Article  Google Scholar 

Konradt C, Hunter CA. Pathogen interactions with endothelial cells and the induction of innate and adaptive immunity. Eur J Immunol. 2018;48:1607–20.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Shao Y, Saredy J, Yang WY, Sun Y, Lu Y, Saaoud F, et al. Vascular endothelial cells and innate immunity. Arterioscler Thromb Vasc Biol. 2020;40:e138–52.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Dib PRB, Quirino-Teixeira AC, Merij LB, Pinheiro MBM, Rozini SV, Andrade FB, et al. Innate immune receptors in platelets and platelet-leukocyte interactions. J Leukoc Biol. 2020;108:1157–82.

CAS  PubMed  Article  Google Scholar 

Guo L, Rondina MT. The era of thromboinflammation: platelets are dynamic sensors and effector cells during infectious diseases. Front Immunol. 2019;10:2204.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Morris G, Bortolasci CC, Puri BK, Olive L, Marx W, O'Neil A, et al. The pathophysiology of SARS-CoV-2: a suggested model and therapeutic approach. Life Sci. 2020;258:118166.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sieow JL, Gun SY, Wong SC. The sweet surrender: how myeloid cell metabolic plasticity shapes the tumor microenvironment. Front Cell Dev Biol. 2018;6:168.

Kelly B, O'Neill LAJ. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015;25:771–84.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Morris G, Walder KR, Berk M, Marx W, Walker AJ, Maes M, et al. The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: can we explain it and can we treat it? Mol Biol Rep. 2020;47:5587–620.

Shyer JA, Flavell RA, Bailis W. Metabolic signaling in T cells. Cell Res. 2020;30:649–59.

PubMed  PubMed Central  Article  Google Scholar 

Waters LR, Ahsan FM, Wolf DM, Shirihai O, Teitell MA. Initial B cell activation induces metabolic reprogramming and mitochondrial remodeling. iScience. 2018;5:99–109.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cong J. Metabolism of natural killer cells and other innate lymphoid cells. Front Immunol. 2020;11:1989.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Morris G, Berk M, Klein H, Walder K, Galecki P, Maes M. Nitrosative stress, hypernitrosylation, and autoimmune responses to nitrosylated proteins: new pathways in neuroprogressive disorders including depression and chronic fatigue syndrome. Mol Neurobiol. 2017;54:4271–91.

CAS  PubMed  Article  Google Scholar 

Son Y, Kim S, Chung HT, Pae HO. Reactive oxygen species in the activation of MAP kinases. Methods Enzymol. 2013;528:27–48.

CAS  PubMed  Article  Google Scholar 

Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y, et al. ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev. 2016;2016:4350965.

PubMed  PubMed Central  Google Scholar 

Sarbassov DD, Sabatini DM. Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex. J Biol Chem. 2005;280:39505–9.

CAS  PubMed  Article  Google Scholar 

Shao D, Oka S-I, Liu T, Zhai P, Ago T, Sciarretta S, et al. A redox-dependent mechanism for regulation of AMPK activation by Thioredoxin1 during energy starvation. Cell Metab. 2014;19:232–45.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Koundouros N, Poulogiannis G. Phosphoinositide 3-kinase/Akt signaling and redox metabolism in cancer. Front Oncol. 2018;8:160.

Bonello S, Zähringer C, BelAiba RS, Djordjevic T, Hess J, Michiels C, et al. Reactive oxygen species activate the HIF1-α promoter via a functional NF-κB site. Arterioscler Thromb Vasc Biol. 2007;27:755–61.

CAS  PubMed  Article  Google Scholar 

Wink DA, Hines HB, Cheng RYS, Switzer CH, Flores-Santana W, Vitek MP, et al. Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol. 2011;89:873–91.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol. 2015;36:161–78.

CAS  PubMed  Article  Google Scholar 

Tavassolifar MJ, Vodjgani M, Salehi Z, Izad M. The influence of reactive oxygen species in the immune system and pathogenesis of multiple sclerosis. Autoimmune Dis. 2020;2020:5793817.

PubMed  PubMed Central  Google Scholar 

Yang Y, Bazhin AV, Werner J, Karakhanova S. Reactive oxygen species in the immune system. Int Rev Immunol. 2013;32:249–70.

PubMed  Article  CAS  Google Scholar 

Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat Rev Immunol. 2013;13:349–61.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Battino M, Giampieri F, Pistollato F, Sureda A, de Oliveira MR, Pittalà V, et al. Nrf2 as regulator of innate immunity: a molecular Swiss army knife! Biotechnol Adv. 2018;36:358–70.

CAS  PubMed  Article  Google Scholar 

Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Investig. 2006;116:984–95.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kim J, Surh Y-J. The role of Nrf2 in cellular innate immune response to inflammatory injury. Toxicol Res. 2009;25:159–73.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Krönke G, Leitinger N. Oxidized phospholipids at the interface of innate and adaptive immunity. Future Lipidol. 2006;1:623–30.

Article  Google Scholar 

Serbulea V, DeWeese D, Leitinger N. The effect of oxidized phospholipids on phenotypic polarization and function of macrophages. Free Radic Biol Med. 2017;111:156–68.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Freigang S. The regulation of inflammation by oxidized phospholipids. Eur J Immunol. 2016;46:1818–25.

CAS  PubMed  Article  Google Scholar 

Matt U, Sharif O, Martins R, Knapp S. Accumulating evidence for a role of oxidized phospholipids in infectious diseases. Cell Mol Life Sci. 2015;72:1059–71.

CAS  PubMed  Article  Google Scholar 

Creasy KT, Kane JP, Malloy MJ. Emerging roles of HDL in immune function. Curr Opin Lipidol. 2018;29:486–7.

CAS  PubMed  Article  Google Scholar 

Macpherson ME, Halvorsen B, Yndestad A, Ueland T, Mollnes TE, Berge RK, et al. Impaired HDL function amplifies systemic inflammation in common variable immunodeficiency. Sci Rep. 2019;9:9427.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Catapano AL, Pirillo A, Bonacina F, Norata GD. HDL in innate and adaptive immunity. Cardiovascular Res. 2014;103:372–83.

CAS  Article  Google Scholar 

Wu H, Gong J, Liu Y. Indoleamine 2, 3-dioxygenase regulation of immune response (Review). Mol Med Rep. 2018;17:4867–73.

CAS  PubMed  Google Scholar 

Nelp MT, Kates PA, Hunt JT, Newitt JA, Balog A, Maley D, et al. Immune-modulating enzyme indoleamine 2,3-dioxygenase is effectively inhibited by targeting its apo-form. Proc Natl Acad Sci USA. 2018;115:3249–54.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Morris G, Puri BK, Bortolasci CC, Carvalho A, Berk M, Walder K, et al. The role of high-density lipoprotein cholesterol, apolipoprotein A and paraoxonase-1 in the pathophysiology of neuroprogressive disorders. Neurosci Biobehav Rev. 2021;125:244–63.

CAS  PubMed  Article 

留言 (0)

沒有登入
gif