Scalable and continuous access to pure cyclic polymers enabled by ‘quarantined’ heterogeneous catalysts

González-Reyes, G. A., Bayo-Besteiro, S., Vich Llobet, J. & Añel, J. A. Environmental and economic constraints on the use of lubricant oils for wind and hydropower generation: the case of NATURGY. Sustainability 12, 4242 (2020).

Article  Google Scholar 

Wakiru, J., Pintelon, L., Muchiri, P. N., Chemweno, P. K. & Mburu, S. Towards an innovative lubricant condition monitoring strategy for maintenance of ageing multi-unit systems. Reliab. Eng. Syst. 204, 107200 (2020).

Article  Google Scholar 

Zolper, T. et al. Lubrication properties of polyalphaolefin and polysiloxane lubricants: molecular structure–tribology relationships. Tribol. Lett. 48, 355–365 (2012).

CAS  Google Scholar 

Greaves, M. Pressure viscosity coefficients and traction properties of synthetic lubricants for wind turbine gear systems. Lubr. Sci. 24, 75–83 (2012).

CAS  Article  Google Scholar 

Ray, S., Rao, P. V. C. & Choudary, N. V. Poly-α-olefin-based synthetic lubricants: a short review on various synthetic routes. Lubr. Sci. 24, 23–44 (2012).

CAS  Article  Google Scholar 

Martini, A., Ramasamy, U. S. & Len, M. Review of viscosity modifier lubricant additives. Tribol. Lett. 66, 58 (2018).

Article  CAS  Google Scholar 

Morgan, S., Ye, Z., Subramanian, R. & Zhu, S. Higher-molecular-weight hyperbranched polyethylenes containing crosslinking structures as lubricant viscosity-index improvers. Polym. Eng. Sci. 50, 911–918 (2010).

CAS  Article  Google Scholar 

Ver Strate, G. & Struglinski, M. J. in Polymers as Rheology Modifiers, ACS Symposium Series Vol. 462 (eds Schulz, D. N. & Glass, J. E.) Ch. 15 (American Chemical Society, 1991).

Peterson, G. I. & Choi, T.-L. The influence of polymer architecture in polymer mechanochemistry. Chem. Commun. 57, 6465–6474 (2021).

CAS  Article  Google Scholar 

Lin, Y., Zhang, Y., Wang, Z. & Craig, S. L. Dynamic memory effects in the mechanochemistry of cyclic polymers. J. Am. Chem. Soc. 141, 10943–10947 (2019).

CAS  PubMed  Article  Google Scholar 

Bielawski, C. W., Benitez, D. & Grubbs, R. H. An ‘endless’ route to cyclic polymers. Science 297, 2041–2044 (2002).

CAS  PubMed  Article  Google Scholar 

Xia, Y. et al. Ring-expansion metathesis polymerization: catalyst-dependent polymerization profiles. J. Am. Chem. Soc. 131, 2670–2677 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Boydston, A. J., Xia, Y., Kornfield, J. A., Gorodetskaya, I. A. & Grubbs, R. H. Cyclic ruthenium-alkylidene catalysts for ring-expansion metathesis polymerization. J. Am. Chem. Soc. 130, 12775–12782 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Xia, Y., Boydston, A. J. & Grubbs, R. H. Synthesis and direct imaging of ultrahigh molecular weight cyclic brush polymers. Angew. Chem. Int. Ed. 50, 5882–5885 (2011).

CAS  Article  Google Scholar 

Boydston, A. J., Holcombe, T. W., Unruh, D. A., Fréchet, J. M. J. & Grubbs, R. H. A direct route to cyclic organic nanostructures via ring-expansion metathesis polymerization of a dendronized macromonomer. J. Am. Chem. Soc. 131, 5388–5389 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bielawski, C. W., Benitez, D. & Grubbs, R. H. Synthesis of cyclic polybutadiene via ring-opening metathesis polymerization: the importance of removing trace linear contaminants. J. Am. Chem. Soc. 125, 8424–8425 (2003).

CAS  PubMed  Article  Google Scholar 

Wang, T.-W., Huang, P.-R., Chow, J. L., Kaminsky, W. & Golder, M. R. A cyclic ruthenium benzylidene initiator platform enhances reactivity for ring-expansion metathesis polymerization. J. Am. Chem. Soc. 143, 7314–7319 (2021).

CAS  PubMed  Article  Google Scholar 

Miao, Z. et al. Cyclic polyacetylene. Nat. Chem. 13, 792–799 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

McGraw, M. L., Clarke, R. W. & Chen, E. Y. X. Synchronous control of chain length/sequence/topology for precision synthesis of cyclic block copolymers from monomer mixtures. J. Am. Chem. Soc. 143, 3318–3322 (2021).

CAS  PubMed  Article  Google Scholar 

Niu, W. et al. Polypropylene: now available without chain ends. Chem 5, 237–244 (2019).

CAS  Article  Google Scholar 

Roland, C. D., Li, H., Abboud, K. A., Wagener, K. B. & Veige, A. S. Cyclic polymers from alkynes. Nat. Chem. 8, 791–796 (2016).

CAS  PubMed  Article  Google Scholar 

Lidster, B. J. et al. Macrocyclic poly(p-phenylenevinylene)s by ring expansion metathesis polymerisation and their characterisation by single-molecule spectroscopy. Chem. Sci. 9, 2934–2941 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang, K., Lackey, M. A., Wu, Y. & Tew, G. N. Universal cyclic polymer templates. J. Am. Chem. Soc. 133, 6906–6909 (2011).

CAS  PubMed  Article  Google Scholar 

Edwards, J. P., Wolf, W. J. & Grubbs, R. H. The synthesis of cyclic polymers by olefin metathesis: achievements and challenges. J. Polym. Sci. A Polym. Chem. 57, 228–242 (2018).

Article  CAS  Google Scholar 

Chang, Y. A. & Waymouth, R. M. Recent progress on the synthesis of cyclic polymers via ring-expansion strategies. J. Polym. Sci. A Polym. Chem. 55, 2892–2902 (2017).

CAS  Article  Google Scholar 

Haque, F. M. & Grayson, S. M. The synthesis, properties and potential applications of cyclic polymers. Nat. Chem. 12, 433–444 (2020).

CAS  PubMed  Article  Google Scholar 

Golba, B., Benetti, E. M. & De Geest, B. G. Biomaterials applications of cyclic polymers. Biomaterials 267, 120468 (2021).

CAS  PubMed  Article  Google Scholar 

Miao, Z. et al. Semi-conducting cyclic copolymers of acetylene and propyne. React. Funct. Polym. 169, 105088 (2021).

CAS  Article  Google Scholar 

Tuba, R. Synthesis of cyclopolyolefins via ruthenium catalyzed ring-expansion metathesis polymerization. Pure Appl. Chem. 86, 1685–1693 (2014).

CAS  Article  Google Scholar 

Jawiczuk, M., Marczyk, A. & Trzaskowski, B. Decomposition of ruthenium olefin metathesis catalyst. Catalysts 10, 887 (2020).

CAS  Article  Google Scholar 

Allen, D. P., Van Wingerden, M. M. & Grubbs, R. H. Well-defined silica-supported olefin metathesis catalysts. Org. Lett. 11, 1261–1264 (2009).

CAS  PubMed  Article  Google Scholar 

Dewaele, A., Van Berlo, B., Dijkmans, J., Jacobs, P. A. & Sels, B. F. Immobilized Grubbs catalysts on mesoporous silica materials: insight into support characteristics and their impact on catalytic activity and product selectivity. Catal. Sci. Technol. 6, 2580–2597 (2016).

CAS  Article  Google Scholar 

Hejl, A., Scherman, O. A. & Grubbs, R. H. Ring-opening metathesis polymerization of functionalized low-strain monomers with ruthenium-based catalysts. Macromolecules 38, 7214–7218 (2005).

CAS  Article  Google Scholar 

Neary, W. J. & Kennemur, J. G. Polypentenamer renaissance: challenges and opportunities. ACS Macro Lett. 8, 46–56 (2019).

CAS  PubMed  Article  Google Scholar 

Tuba, R. & Grubbs, R. H. Ruthenium catalyzed equilibrium ring-opening metathesis polymerization of cyclopentene. Polym. Chem. 4, 3959–3962 (2013).

CAS  Article  Google Scholar 

Neary, W. J. & Kennemur, J. G. Variable temperature ROMP: leveraging low ring strain thermodynamics to achieve well-defined polypentenamers. Macromolecules 50, 4935–4941 (2017).

CAS  Article  Google Scholar 

Mulhearn, W. D. & Register, R. A. Synthesis of narrow-distribution, high-molecular-weight ROMP polycyclopentene via suppression of acyclic metathesis side reactions. ACS Macro Lett. 6, 112–116 (2017).

CAS  PubMed  Article  Google Scholar 

Lee, L.-B. W. & Register, R. A. Acyclic metathesis during ring-opening metathesis polymerization of cyclopentene. Polymer 45, 6479–6485 (2004).

CAS  Article  Google Scholar 

Ji, S., Hoye, T. R. & Macosko, C. W. Controlled synthesis of high molecular weight telechelic polybutadienes by ring-opening metathesis polymerization. Macromolecules 37, 5485–5489 (2004).

CAS  Article  Google Scholar 

Obligacion, J. V. & Chirik, P. J. Bis(imino)pyridine cobalt-catalyzed alkene isomerization–hydroboration: a strategy for remote hydrofunctionalization with terminal selectivity. J. Am. Chem. Soc. 135, 19107–19110 (2013).

CAS  PubMed  Article  Google Scholar 

Ulman, M. & Grubbs, R. H. Ruthenium carbene-based olefin metathesis initiators: catalyst decomposition and longevity. J. Org. Chem. 64, 7202–7207 (1999).

CAS  Article  Google Scholar 

Torre Iii, M., Mulhearn, W. D. & Register, R. A. Ring-opening metathesis copolymerization of cyclopentene above and below its equilibrium monomer concentration. Macromol. Chem. Phys. 219, 1800030 (2018).

Article  CAS  Google Scholar 

Szczepaniak, G., Kosiński, K. & Grela, K. Towards ‘cleaner’ olefin metathesis: tailoring the NHC ligand of second generation ruthenium catalysts to afford auxiliary traits. Green Chem. 16, 4474–4492 (2014).

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif