A modular XNAzyme cleaves long, structured RNAs under physiological conditions and enables allele-specific gene silencing

Micura, R. & Hobartner, C. Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chem. Soc. Rev. 49, 7331–7353 (2020).

CAS  PubMed  Article  Google Scholar 

Ma, L. & Liu, J. Catalytic nucleic acids: biochemistry, chemical biology, biosensors and nanotechnology. iScience 23, 100815 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Peng, H., Latifi, B., Muller, S., Luptak, A. & Chen, I. A. Self-cleaving ribozymes: substrate specificity and synthetic biology applications. RSC Chem. Biol. https://doi.org/10.1039/d0cb00207k (2021).

Haseloff, J. & Gerlach, W. L. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334, 585–591 (1988).

CAS  PubMed  Article  Google Scholar 

Santoro, S. W. & Joyce, G. F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl Acad. Sci. USA 94, 4262–4266 (1997).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Faulhammer, D. & Famulok, M. Characterization and divalent metal-ion dependence of in vitro selected deoxyribozymes which cleave DNA/RNA chimeric oligonucleotides. J. Mol. Biol. 269, 188–202 (1997).

CAS  PubMed  Article  Google Scholar 

Liu, M., Chang, D. & Li, Y. Discovery and biosensing applications of diverse RNA-cleaving DNAzymes. Acc. Chem. Res. 50, 2273–2283 (2017).

CAS  PubMed  Article  Google Scholar 

Poje, J. E. et al. Visual displays that directly interface and provide read-outs of molecular states via molecular graphics processing units. Angew. Chem. Int. Ed. 53, 9222–9225 (2014).

CAS  Article  Google Scholar 

Kahan-Hanum, M., Douek, Y., Adar, R. & Shapiro, E. A library of programmable DNAzymes that operate in a cellular environment. Sci. Rep. 3, 1535 (2013).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Peng, H., Li, X. F., Zhang, H. & Le, X. C. A microRNA-initiated DNAzyme motor operating in living cells. Nat. Commun. 8, 14378 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Usman, N. & Blatt, L. M. Nuclease-resistant synthetic ribozymes: developing a new class of therapeutics. J. Clin. Invest. 106, 1197–1202 (2000).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Morrow, P. K. et al. An open‐label, phase 2 trial of RPI.4610 (angiozyme) in the treatment of metastatic breast cancer. Cancer 118, 4098–4104 (2012).

CAS  PubMed  Article  Google Scholar 

Purath, U. et al. Efficacy of T-cell transcription factor-specific DNAzymes in murine skin inflammation models. J. Allergy Clin. Immunol. 137, 644–647.e648 (2016).

CAS  PubMed  Article  Google Scholar 

Garn, H. & Renz, H. GATA-3-specific DNAzyme - a novel approach for stratified asthma therapy. Eur. J. Immunol. 47, 22–30 (2017).

CAS  PubMed  Article  Google Scholar 

Greulich, T. et al. A GATA3-specific DNAzyme attenuates sputum eosinophilia in eosinophilic COPD patients: a feasibility randomized clinical trial. Respir. Res. 19, 55 (2018).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Khachigian, L. M. Deoxyribozymes as catalytic nanotherapeutic agents. Cancer Res. 79, 879–888 (2019).

CAS  PubMed  Article  Google Scholar 

Rossi, J. J. Resurrecting DNAzymes as sequence-specific therapeutics. Sci. Transl. Med. 4, 139fs120 (2012).

Article  CAS  Google Scholar 

Fokina, A. A., Stetsenko, D. A. & François, J.-C. DNA enzymes as potential therapeutics: towards clinical application of 10-23 DNAzymes. Expert Opin. Biol. Ther. 15, 689–711 (2015).

CAS  PubMed  Article  Google Scholar 

Fokina, A. A., Chelobanov, B. P., Fujii, M. & Stetsenko, D. A. Delivery of therapeutic RNA-cleaving oligodeoxyribonucleotides (deoxyribozymes): from cell culture studies to clinical trials. Expert Opin. Drug Deliv. 14, 1077–1089 (2017).

CAS  PubMed  Article  Google Scholar 

Zhang, J. RNA-cleaving DNAzymes: old catalysts with new tricks for intracellular and in vivo applications. Catalysts 8, 550 (2018).

Article  CAS  Google Scholar 

Cieslak, M., Szymanski, J., Adamiak, R. W. & Cierniewski, C. S. Structural rearrangements of the 10-23 DNAzyme to β3 integrin subunit mRNA induced by cations and their relations to the catalytic activity. J. Biol. Chem. 278, 47987–47996 (2003).

CAS  PubMed  Article  Google Scholar 

Victor, J., Steger, G. & Riesner, D. Inability of DNAzymes to cleave RNA in vivo is due to limited Mg2+ concentration in cells. Eur. Biophys. J. 47, 333–343 (2017).

PubMed  Article  CAS  Google Scholar 

Young, D. D., Lively, M. O. & Deiters, A. Activation and deactivation of DNAzyme and antisense function with light for the photochemical regulation of gene expression in mammalian cells. J. Am. Chem. Soc. 132, 6183–6193 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rivory, L. et al. The DNAzymes Rs6, Dz13, and DzF have potent biologic effects independent of catalytic activity. Oligonucleotides 16, 297–312 (2006).

CAS  PubMed  Article  Google Scholar 

Goodchild, A. et al. Cytotoxic G-rich oligodeoxynucleotides: putative protein targets and required sequence motif. Nucleic Acids Res. 35, 4562–4572 (2007).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Dass, C. R. & Choong, P. F. Sequence-related off-target effect of Dz13 against human tumor cells and safety in adult and fetal mice following systemic administration. Oligonucleotides 20, 51–60 (2010).

CAS  PubMed  Article  Google Scholar 

Geyer, C. R. & Sen, D. Evidence for the metal-cofactor independence of an RNA phosphodiester-cleaving DNA enzyme. Chem. Biol. 4, 579–593 (1997).

CAS  PubMed  Article  Google Scholar 

Carrigan, M. A., Ricardo, A., Ang, D. N. & Benner, S. A. Quantitative analysis of a RNA-cleaving DNA catalyst obtained via in vitro selection. Biochemistry 43, 11446–11459 (2004).

CAS  PubMed  Article  Google Scholar 

Kasprowicz, A., Stokowa-Sołtys, K., Jeżowska-Bojczuk, M., Wrzesiński, J. & Ciesiołka, J. Characterization of highly efficient RNA-cleaving DNAzymes that function at acidic pH with no divalent metal-ion cofactors. Chem. Open 6, 46–56 (2017).

CAS  Google Scholar 

Roth, A. & Breaker, R. R. An amino acid as a cofactor for a catalytic polynucleotide. Proc. Natl Acad. Sci. USA 95, 6027–6031 (1998).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hollenstein, M., Hipolito, C. J., Lam, C. H. & Perrin, D. M. A self-cleaving DNA enzyme modified with amines, guanidines and imidazoles operates independently of divalent metal cations (M2+). Nucleic Acids Res. 37, 1638–1649 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang, Y., Liu, E., Lam, C. H. & Perrin, D. M. A densely modified M2+-independent DNAzyme that cleaves RNA efficiently with multiple catalytic turnover. Chem. Sci. 9, 1813–1821 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hollenstein, M. Nucleic acid enzymes based on functionalized nucleosides. Curr. Opin. Chem. Biol. 52, 93–101 (2019).

CAS  PubMed  Article  Google Scholar 

Abdelgany, A., Wood, M. & Beeson, D. Hairpin DNAzymes: a new tool for efficient cellular gene silencing. J. Gene Med. 9, 727–738 (2007).

CAS  PubMed  Article  Google Scholar 

Rouge, J. L. et al. Ribozyme-spherical nucleic acids. J. Am. Chem. Soc. 137, 10528–10531 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Thai, H. B. D. et al. Tetrahedral DNAzymes for enhanced intracellular gene-silencing activity. Chem. Commun. 54, 9410–9413 (2018).

CAS  Article  Google Scholar 

Anosova, I. et al. The structural diversity of artificial genetic polymers. Nucleic Acids Res. 44, 1007–1021 (2016).

CAS  PubMed  Article  Google Scholar 

Khvorova, A. & Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35, 238–248 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Morihiro, K., Kasahara, Y. & Obika, S. Biological applications of xeno nucleic acids. Mol. Biosyst. 13, 235–245 (2017).

CAS  PubMed  Article  Google Scholar 

留言 (0)

沒有登入
gif