Aberrant astrocyte protein secretion contributes to altered neuronal development in multiple models of neurodevelopmental disorders

Ebrahimi-Fakhari, D. & Sahin, M. Autism and the synapse: emerging mechanisms and mechanism-based therapies. Curr. Opin. Neurol. 28, 91–102 (2015).

CAS  PubMed  Article  Google Scholar 

Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

CAS  PubMed  Article  Google Scholar 

Xu, X., Miller, E. C. & Pozzo-Miller, L. Dendritic spine dysgenesis in Rett syndrome. Front. Neuroanat. 8, 97 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Wang, I. T. J., Reyes, A.-R. S. & Zhou, Z. Neuronal morphology in MeCP2 mouse models is intrinsically variable and depends on age, cell type, and Mecp2 mutation. Neurobiol. Dis. 58, 3–12 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Irwin, S. A., Galvez, R. & Greenough, W. T. Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb. Cortex 10, 1038–1044 (2000).

Nimchinsky, E. A., Oberlander, A. M. & Svoboda, K. Abnormal development of dendritic spines in FMR1 knock-out mice. J. Neurosci. 21, 5139–5146 (2001).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Benavides-Piccione, R. et al. On dendrites in Down syndrome and DS murine models: a spiny way to learn. Prog. Neurobiol. 74, 111–126 (2004).

CAS  PubMed  Article  Google Scholar 

Blanco-Suárez, E., Caldwell, A. L. M. & Allen, N. J. Role of astrocyte–synapse interactions in CNS disorders. J. Physiol. 595, 1903–1916 (2017).

PubMed  Article  CAS  Google Scholar 

Banker, G. Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 209, 809–810 (1980).

CAS  PubMed  Article  Google Scholar 

Ullian, E. M., Sapperstein, S. K., Christopherson, K. S. & Barres, B. A. Control of synapse number by glia. Science 291, 657–661 (2001).

CAS  PubMed  Article  Google Scholar 

Araujo, B. H. S., et al. Down syndrome iPSC-derived astrocytes impair neuronal synaptogenesis and the mTOR pathway in vitro. Mol. Neurobiol. 55, 5962–5975 (2017).

Ballas, N., Lioy, D. T., Grunseich, C. & Mandel, G. Non–cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat. Neurosci. 12, 311–317 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jacobs, S., Nathwani, M. & Doering, L. Fragile X astrocytes induce developmental delays in dendrite maturation and synaptic protein expression. BMC Neurosci. 11, 132 (2010).

PubMed  PubMed Central  Article  Google Scholar 

Meissner, F., Scheltema, R. A., Mollenkopf, H.-J. & Mann, M. Direct proteomic quantification of the secretome of activated immune cells. Science 340, 475–478 (2013).

CAS  PubMed  Article  Google Scholar 

Johnson, E. C. B. et al. Large-scale deep multi-layer analysis of Alzheimer’s disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nat. Neurosci. 25, 213–225 (2022).

Boisvert, M. M., Erikson, G. A., Shokhirev, M. N. & Allen, N. J. The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep. 22, 269–285 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chai, H. et al. Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron 95, 531–549 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

McCarthy, K. D. & de Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol. 85, 890–902 (1980).

CAS  PubMed  Article  Google Scholar 

Foo, L. C. et al. Development of a method for the purification and culture of rodent astrocytes. Neuron 71, 799–811 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Foo, L. C. Purification of rat and mouse astrocytes by immunopanning. Cold Spring Harb. Protoc. 2013, 421–432 (2013).

Article  Google Scholar 

Batiuk, M. Y. et al. An immunoaffinity-based method for isolating ultrapure adult astrocytes based on ATP1B2 targeting by the ACSA-2 antibody. J. Biol. Chem. 292, 8874–8891 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kantzer, C. et al. Anti-ACSA-2 defines a novel monoclonal antibody for prospective isolation of living neonatal and adult astrocytes. Glia 65, 990–1004 (2017).

PubMed  Article  Google Scholar 

Steinmetz, C. C., Buard, I., Claudepierre, T., Nägler, K. & Pfrieger, F. W. Regional variations in the glial influence on synapse development in the mouse CNS. J. Physiol. 577, 249–261 (2006).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Williams, E. C. et al. Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wild-type neurons. Hum. Mol. Genet. 23, 2968–2980 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Allen, N. J. & Eroglu, C. Cell biology of astrocyte–synapse interactions. Neuron 96, 697–708 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yang, Y. H., Nam, M. S. & Yang, E. S. Rapid prenatal diagnosis of trisomy 21 by real-time quantitative polymerase chain reaction with amplification of small tandem repeats and S100B in chromosome 21. Yonsei Med. J. 46, 193–197 (2005).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Higashimori, H. et al. Selective deletion of astroglial FMRP dysregulates glutamate transporter GLT1 and contributes to fragile X syndrome phenotypes in vivo. J. Neurosci. 36, 7079–7094 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Higashimori, H. et al. Astroglial FMRP-dependent translational down-regulation of mGluR5 underlies glutamate transporter GLT1 dysregulation in the fragile X mouse. Hum. Mol. Genet. 22, 2041–2054 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yuskaitis, C. J., Beurel, E. & Jope, R. S. Evidence of reactive astrocytes but not peripheral immune system activation in a mouse model of fragile X syndrome. Biochim. Biophys. Acta 1802, 1006–1012 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Blanco-Suarez, E., Liu, T.-F., Kopelevich, A. & Allen, N. J. Astrocyte-secreted chordin-like 1 drives synapse maturation and limits plasticity by increasing synaptic GluA2 AMPA receptors. Neuron 100, 1116–1132.e1113 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Molofsky, A. V. et al. Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature 509, 189–194 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Scholze, A. R., Foo, L. C., Mulinyawe, S. & Barres, B. A. BMP signaling in astrocytes downregulates EGFR to modulate survival and maturation. PLoS ONE 9, e110668 (2014).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Yang, Q. et al. Excessive astrocyte-derived neurotrophin-3 contributes to the abnormal neuronal dendritic development in a mouse model of fragile X syndrome. PLoS Genet. 8, e1003172 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Vilardell, M. et al. Meta-analysis of heterogeneous Down syndrome data reveals consistent genome-wide dosage effects related to neurological processes. BMC Genomics 12, 229 (2011).

PubMed  PubMed Central  Article  Google Scholar 

Ballestín, R. et al. Astrocytes of the murine model for Down syndrome Ts65Dn display reduced intracellular ionic zinc. Neurochem. Int. 75, 48–53 (2014).

PubMed  Article  CAS  Google Scholar 

Costales, J. & Kolevzon, A. The therapeutic potential of insulin-like growth factor-1 in central nervous system disorders. Neurosci. Biobehav. Rev. 63, 207–222 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Woronowicz, A. et al. Carboxypeptidase E knockout mice exhibit abnormal dendritic arborization and spine morphology in central nervous system neurons. J. Neurosci. Res. 88, 64–72 (2010).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

CAS  PubMed 

留言 (0)

沒有登入
gif