The processing network of high-frequency acoustoelectric signal in the living rat brain

Objective. Acoustoelectric brain imaging (ABI) is a potential noninvasive electrophysiological neuroimaging method with high spatiotemporal resolution. At the focal spot of the focused ultrasound, with the couple of acoustic and electric fields, high-frequency acoustoelectric (HF AE) signal is generated. Because the brain is a volume conductor, HF AE signal can be detected in other brain cortex. The processing of HF AE signal is critical for improving decoding precision, further improving the spatial resolution performance of ABI. This study investigates the processing network of HF AE signal in the living rat brain. Approach. When HF AE generated on the left primary visual cortex (V1-L), low-frequency (LF) electroencephalography and HF AE signals on different cortex were recorded at the same time. Firstly, AE signal on different sides of the brain cortex were compared, including prefrontal cortex (FrA) and primary somatosensory cortex (S1FL). Then, we constructed and analyzed functional networks of two signals. Main results. In the same cortex, HF AE signal on the right side had stronger intensity. And compared with LF networks, HF AE network had larger global efficiency and shorter characteristic path length, denoting the stronger processing and transmission of AE signal. Additionally, in HF AE network, the node had significantly increased local properties and the connection were concentrated in the occipital lobe, reflecting the occipital lobe plays an important role in the processing. Significance. Experiment results demonstrate that, compared with LF network, HF AE network is more efficient and had stronger transmission capabilities. And the connection of HF AE network is concentrated in the occipital lobe. This work preliminarily reveals the HF AE signal processing, which is significant for improving the ABI quality and provides a new insight for understanding the brain HF signal.

留言 (0)

沒有登入
gif