Radiationless deactivation pathways versus H-atom elimination from the N–H bond photodissociation in PhNH2-(Py)n (n = 1,2) complexes

King, G. A., Oliver, T. A. A., & Ashfold, M. N. R. (2010). Dynamical insights into 1πσ* state mediated photodissociation of aniline. Journal of Chemical Physics, 132(21), 214307. https://doi.org/10.1063/1.3427544

CAS  Article  PubMed  Google Scholar 

Schultz, T., Samoylova, E., Radloff, W., Hertel, I. V., Sobolewski, A. L., & Domcke, W. (2004). Efficient deactivation of a model base pair via excited-state hydrogen transfer. Science, 306(5702), 1765–1768. https://doi.org/10.1126/science.1104038

CAS  Article  PubMed  Google Scholar 

Sobolewski, A. L., Domcke, W., Dedonder-Lardeux, C., & Jouvet, C. (2002). Excited-state hydrogen detachment and hydrogen transfer driven by repulsive 1πσ* states: A new paradigm for nonradiative decay in aromatic biomolecules. Physical Chemistry Chemical Physics, 4(7), 1093–1100. https://doi.org/10.1039/b110941n

CAS  Article  Google Scholar 

Ebata, T., Minejima, C., & Mikami, N. (2002). A new electronic state of aniline observed in the transient IR absorption spectrum from S1 in a supersonic jet. Journal of Physical Chemistry A, 106(46), 11070–11074. https://doi.org/10.1021/jp021457t

CAS  Article  Google Scholar 

Spesyvtsev, R., Kirkby, O. M., & Fielding, H. H. (2012). Ultrafast dynamics of aniline following 269–238 nm excitation and the role of the S2(π3s/πσ*) state. Faraday Discussions, 157, 165–179. https://doi.org/10.1039/c2fd20076g

CAS  Article  PubMed  Google Scholar 

Spesyvtsev, R., Kirkby, O. M., Vacher, M., & Fielding, H. H. (2012). Shedding new light on the role of the Rydberg state in the photochemistry of aniline. Physical Chemistry Chemical Physics, 14(28), 9942–9947. https://doi.org/10.1039/c2cp41785e

CAS  Article  PubMed  Google Scholar 

Roberts, G. M., Williams, C. A., Young, J. D., Ullrich, S., Paterson, M. J., & Stavros, V. G. (2012). Unraveling ultrafast dynamics in photoexcited aniline. Journal of the American Chemical Society, 134(30), 12578–12589. https://doi.org/10.1021/ja3029729

CAS  Article  PubMed  Google Scholar 

Montero, R., Conde, L. P., Ovejas, V., Martnez, R., Castao, F., & Longarte, A. (2011). Ultrafast dynamics of aniline in the 294–234 nm excitation range: the role of the π σ* state. Journal of Chemical Physics, 135(5), 054308. https://doi.org/10.1063/1.3615544

CAS  Article  PubMed  Google Scholar 

Rajasekhar, B. N., Veeraiah, A., Sunanda, K., & Jagatap, B. N. (2013). Excited states of aniline by photoabsorption spectroscopy in the 30 000–90 000 cm-1 region using synchrotron radiation. Journal of Chemical Physics, 139(6), 064303. https://doi.org/10.1063/1.4817206

CAS  Article  PubMed  Google Scholar 

Thompson, J. O. F., Livingstone, R. A., & Townsend, D. (2013). Following the relaxation dynamics of photoexcited aniline in the 273–266 nm region using time-resolved photoelectron imaging. Journal of Chemical Physics. https://doi.org/10.1063/1.4813005

Article  PubMed  Google Scholar 

Roberts, G. M., & Stavros, V. G. (2014). The role of πσ* states in the photochemistry of heteroaromatic biomolecules and their subunits: Insights from gas-phase femtosecond spectroscopy. Chemical Science, 5(5), 1698–1722. https://doi.org/10.1039/c3sc53175a

CAS  Article  Google Scholar 

Thompson, J. O., Saalbach, L., Crane, S. W., Paterson, M. J., & Townsend, D. (2015). Ultraviolet relaxation dynamics of aniline, N, N -dimethylaniline and 3,5-dimethylaniline at 250 nm. Journal of Chemical Physics, 142(11), 03B612_1. https://doi.org/10.1063/1.4914330

CAS  Article  Google Scholar 

Kirkby, O. M., Sala, M., Balerdi, G., De Nalda, R., Bañares, L., Guérin, S., & Fielding, H. H. (2015). Comparing the electronic relaxation dynamics of aniline and d7-aniline following excitation at 272–238 nm. Physical Chemistry Chemical Physics, 17(25), 16270–16276. https://doi.org/10.1039/C5CP01883H

CAS  Article  PubMed  Google Scholar 

Cole-Filipiak, N. C., & Stavros, V. G. (2019). New insights into the dissociation dynamics of methylated anilines. Physical Chemistry Chemical Physics, 21(26), 14394–14406. https://doi.org/10.1039/C8CP07061J

CAS  Article  PubMed  Google Scholar 

Poterya, V., Nachtigallová, D., Lengyel, J., & Fárník, M. (2015). Photodissociation of aniline N-H bonds in clusters of different nature. Physical Chemistry Chemical Physics, 17(38), 25004–25013. https://doi.org/10.1039/C5CP04485E

CAS  Article  PubMed  Google Scholar 

Zawadzki, M. M., Candelaresi, M., Saalbach, L., Crane, S. W., Paterson, M. J., & Townsend, D. (2016). Observation of multi-channel non-adiabatic dynamics in aniline derivatives using time-resolved photoelectron imaging. Faraday Discussions, 194, 185–208. https://doi.org/10.1039/C6FD00092D

CAS  Article  PubMed  Google Scholar 

Paterson, M. J., & Townsend, D. (2020). Rydberg-to-valence evolution in excited state molecular dynamics. International Reviews in Physical Chemistry, 39(4), 517–567. https://doi.org/10.1080/0144235X.2020.1815389

CAS  Article  Google Scholar 

Honda, Y., Hada, M., Ehara, M., & Nakatsuji, H. (2002). Excited and ionized states of aniline: Symmetry adapted cluster configuration interaction theoretical study. Journal of Chemical Physics, 117(5), 2045–2052. https://doi.org/10.1063/1.1487827

CAS  Article  Google Scholar 

Hou, X.-J., Quan, P., Höltzl, T., Veszprémi, T., & Nguyen, M. T. (2005). Theoretical Study of Low-Lying Triplet States of Aniline. Journal of Physical Chemistry A, 109, 10396–10402. https://doi.org/10.1021/jp0533527

CAS  Article  PubMed  Google Scholar 

Wang, F., Neville, S. P., Wang, R., & Worth, G. A. (2013). Quantum dynamics study of photoexcited aniline. Journal of Physical Chemistry A, 117(32), 7298–7307. https://doi.org/10.1021/jp401116c

CAS  Article  PubMed  Google Scholar 

Sala, M., Kirkby, O. M., Guérin, S., & Fielding, H. H. (2014). New insight into the potential energy landscape and relaxation pathways of photoexcited aniline from CASSCF and XMCQDPT2 electronic structure calculations. Physical Chemistry Chemical Physics, 16(7), 3122–3133. https://doi.org/10.1039/C3CP54418D

CAS  Article  PubMed  Google Scholar 

Ray, J., & Ramesh, S. G. (2018). Conical intersections involving the lowest 1πσ∗ state in aniline: Role of the NH2 group. Chemical Physics, 515, 77–87. https://doi.org/10.1016/j.chemphys.2018.03.015

CAS  Article  Google Scholar 

Jhang, W. R., Lai, H. Y., Lin, Y. C., Lee, C., Lee, S. H., Lee, Y. Y., Ni, C. K., & Tseng, C. M. (2019). Triplet vs π σ∗ state mediated N-H dissociation of aniline. Journal of Chemical Physics, 151(14), 141101. https://doi.org/10.1063/1.5121350

CAS  Article  PubMed  Google Scholar 

Ashfold, M. N. R., Cronin, B., Devine, A. L., Dixon, R. N., & Nix, M. G. D. (2006). The role of πσ* excited states in the photodissociation of heteroaromatic molecules. Science, 312(5780), 1637–1640. https://doi.org/10.1126/science.1125436

CAS  Article  PubMed  Google Scholar 

Esboui, M., & Jaidane, N. (2015). Non-radiative deactivation in phenol-pyridine complex: Theoretical study. Photochemical and Photobiological Sciences, 14(6), 1127–1137. https://doi.org/10.1039/C4PP00199K

CAS  Article  PubMed  Google Scholar 

Yeh, J. H., Shen, T. L., Nocera, D. G., Leroi, G. E., Suzuka, I., Ozawa, H., & Namuta, Y. (1996). Resonance two-photon lonization spectroscopy of the aniline dimer. Journal of Physical Chemistry, 100(11), 4385–4389. https://doi.org/10.1021/jp952415q

CAS  Article  Google Scholar 

Schemmel, D., & Schütz, M. (2010). Molecular aniline clusters. I. the electronic ground state. Journal of Chemical Physics, 132(17), 174303. https://doi.org/10.1063/1.3419505

CAS  Article  PubMed  Google Scholar 

Schemmel, D., & Schütz, M. (2010). Molecular aniline clusters. II. the low-lying electronic excited states. Journal of Chemical Physics, 133(13), 134307. https://doi.org/10.1063/1.3488227

CAS  Article  PubMed  Google Scholar 

Montero, R., Lamas, I., León, I., Fernández, J. A., & Longarte, A. (2019). Excited state dynamics of aniline homoclusters. Physical Chemistry Chemical Physics, 21(6), 3098–3105. https://doi.org/10.1039/C8CP06416D

CAS  Article  PubMed  Google Scholar 

Bonin, J., & Robert, M. (2011). Photoinduced proton-coupled electron transfers in biorelevant phenolic systems. Photochemistry and Photobiology, 87(6), 1190–1203. https://doi.org/10.1111/j.1751-1097.2011.00996.x

CAS  Article  PubMed  Google Scholar 

Weinberg, D. R., Gagliardi, C. J., Hull, J. F., Murphy, C. F., Kent, C. A., Westlake, B. C., Paul, A., Ess, D. H., McCafferty, D. G., & Meyer, T. J. (2012). Proton-coupled electron transfer. In Chemical Reviews (Vol. 112, Issue 7, pp. 4016–4093). doi:https://doi.org/10.1021/cr200177j

Mayer, J. M., Hrovat, D. A., Thomas, J. L., & Borden, W. T. (2002). Proton-Coupled Electron Transfer versus Hydrogen Atom Transfer in Benzyl/Toluene, Methoxyl/Methanol, and Phenoxyl/Phenol Self-Exchange Reactions. Journal of the American Chemical Society, 124, 11142–11147. https://doi.org/10.1021/ja012732c

CAS  Article  PubMed  Google Scholar 

Tishchenko, O., Truhlar, D. G., Ceulemans, A., & Minh, T. N. (2008). A unified perspective on the hydrogen atom transfer and proton-coupled electron transfer mechanisms in terms of topographic features of the ground and excited potential energy surfaces as exemplified by the reaction between phenol and radicals. Journal of the American Chemical Society, 130(22), 7000–7010. https://doi.org/10.1021/ja7102907

CAS  Article  PubMed  Google Scholar 

Ahlrichs, R., Bär, M., Häser, M., Horn, H., & Kölmel, C. (1989). Electronic structure calculations on workstation computers: The program system turbomole. Chemical Physics Letters, 162(3), 165–169. https://doi.org/10.1016/0009-2614(89)85118-8

CAS  Article  Google Scholar 

Weigend, F., Häser, M., Patzelt, H., & Ahlrichs, R. (1998). RI-MP2: Optimized auxiliary basis sets and demonstration of efficiency. Chemical Physics Letters, 294(1–3), 143–152. https://doi.org/10.1016/S0009-2614(98)00862-8

CAS  Article  Google Scholar 

Hättig, C. (2003). Geometry optimizations with the coupled-cluster model CC2 using the resolution-of-the-identity approximation. Journal of Chemical Physics, 118(17), 7751–7761. https://doi.org/10.1063/1.1564061

CAS  Article  Google Scholar 

Köhn, A., & Hättig, C. (2003). Analytic gradients for excited states in the coupled-cluster model CC2 employing the resolution-of-the-identity approximation. Journal of Chemical Physics, 119(10), 5021–5036. https://doi.org/10.1063/1.1597635

CAS  Article 

留言 (0)

沒有登入
gif