Photoacclimation of photosystem II photochemistry induced by rose Bengal and methyl viologen in Nannochloropsis oceanica

Salvatori, N., Alberti, G., Mulle, O., & Peressotti, A. (2022). Does fluctuating light affect crop yield? A focus on the dynamic photosynthesis of two soybean varieties. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2022.862275

Article  PubMed  PubMed Central  Google Scholar 

Perin, G., Gambaro, F., & Morosinotto, T. (2022). Knowledge of regulation of photosynthesis in outdoor microalgae cultures is essential for the optimization of biomass productivity. Frontiers in Plant Science, 13, 1–11.

Article  Google Scholar 

Foyer, C. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany, 154, 134–142.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bashir, F., Rehman, A. U., Szabó, M., & Vass, I. (2021). Singlet oxygen damages the function of Photosystem II in isolated thylakoids and in the green alga chlorella sorokiniana. Photosynthesis Research, 149, 93–105.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nishiyama, Y., Allakhverdiev, S. I., Yamamoto, H., Hayashi, H., & Murata, N. (2004). Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry, 43, 11321–11330.

CAS  PubMed  Article  Google Scholar 

Bhatt, M., Pandey, S. S., Tiwari, A. K., & Tiwari, B. S. (2021). Plastid-mediated singlet oxygen in regulated cell death. Plant Biology, 23, 686–694.

CAS  PubMed  Article  Google Scholar 

Gururani, M. A., Venkatesh, J., & Tran, L. S. P. (2015). Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular Plant, 8, 1304–1320.

CAS  PubMed  Article  Google Scholar 

Nishiyama, Y., & Murata, N. (2014). Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Applied Microbiology and Biotechnology, 98, 8777–8796.

CAS  PubMed  Article  Google Scholar 

Foyer, C. H., & Noctor, G. (2016). Stress-triggered redox signalling: What’s in pROSpect? Plant, Cell and Environment, 39, 951–964.

CAS  PubMed  Article  Google Scholar 

Keeling, P. J. (2013). The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annual Review of Plant Biology, 64, 583–607.

CAS  PubMed  Article  Google Scholar 

Stiller, J. W., Schreiber, J., Yue, J., Guo, H., Ding, Q., & Huang, J. (2014). The evolution of photosynthesis in chromist algae through serial endosymbioses. Nature Communications, 5, 1–7.

Article  CAS  Google Scholar 

Gould, S. B., Waller, R. F., & McFadden, G. I. (2008). Plastid evolution. Annual Review of Plant Biology, 59, 491–517.

CAS  PubMed  Article  Google Scholar 

Dorrell, R. G., Gile, G., McCallum, G., Méheust, R., Bapteste, E. P., Klinger, C. M., Brillet-Guéguen, L., Freeman, K. D., Richter, D. J., & Bowler, C. (2017). Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife, 6, 1–45.

Article  Google Scholar 

Kovács, L., Ayaydin, F., Kálai, T., Tandori, J., Kós, P. B., & Hideg, É. (2014). Assessing the applicability of singlet oxygen photosensitizers in leaf studies. Photochemistry and Photobiology, 90, 129–136.

PubMed  Article  CAS  Google Scholar 

Takagi, D., Takumi, S., Hashiguchi, M., Sejima, T., & Miyake, C. (2016). Superoxide and singlet oxygen produced within the thylakoid membranes both cause photosystem I photoinhibition. Plant Physiology, 171, 1626–1634.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Okada, K., Ikeuchi, M., Yamamoto, N., Ono, T. A., & Miyao, M. (1996). Selective and specific cleavage of the D1 and D2 proteins of Photosystem II by exposure to singlet oxygen: Factors responsible for the susceptibility to cleavage of the proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1274, 73–79.

Article  Google Scholar 

Fischer, B. B., Hideg, É., & Krieger-Liszkay, A. (2013). Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxidants Redox Signal., 18, 2145–2162.

CAS  Article  Google Scholar 

Ben Sheleg, A., Novoplansky, N., & Vonshak, A. (2019). Can Rose Bengal resilience be used as a marker for photosynthetic resilience of Nannochloropsis oceanica strains in excess light environments? (p. 41). Elsevier.

Google Scholar 

Ben-Sheleg, A., & Vonshak, A. (2022). Tolerance to exogenously added ROS examined for correlation with enhanced specific growth rates of Arthrospira platensis. Journal of Applied Phycology. https://doi.org/10.1007/s10811-022-02688-0

Article  Google Scholar 

Dall’Osto, L., Cazzaniga, S., Guardini, Z., Barera, S., Benedetti, M., Mannino, G., Maffei, M. E., & Bassi, R. (2019). Combined resistance to oxidative stress and reduced antenna size enhance light-to-biomass conversion efficiency in Chlorella vulgaris cultures. Biotechnology for Biofuels, 12, 1–17.

Article  CAS  Google Scholar 

Ben-sheleg, A., Khozin-godberg, I., Yaakov, B., & Vonshak, A. (2021). Characterization of Nannochloropsis oceanica rose Bengal mutants sheds light on acclimation mechanisms to high light when grown in low temperature a barrier to realizing nannochloropsis oceanica’s potential. PCP, 62, 1478–1493.

CAS  Google Scholar 

Seely, G. R., Duncan, M. J., & Vidaver, W. E. (1972). Preparative and analytical extraction of pigments from brown algae with dimethyl sulfoxide. Marine Biology, 12, 184–188.

CAS  Article  Google Scholar 

Monod, J., Wyman, J., & Changeux, J. P. (1965). On the nature of allosteric transitions: A plausible model. Journal of Molecular Biology, 12, 88–118.

CAS  PubMed  Article  Google Scholar 

Strasser, R. J., Srivastava, A., & Tsimilli-Michael, M. (1999). In M. Yunus, U. Pathre, & P. Mohanty (Eds.), Probing photosynthesis mechanisms, regulation and adaptation (pp. 445–483). Taylor & Francis.

Google Scholar 

Stirbet, A., Lazár, D., Kromdijk, J., & Govindjee,. (2018). Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica, 56, 1–19.

Article  CAS  Google Scholar 

Babbs, C. F., Pham, J. A., & Coolbaugh, R. C. (1989). Lethal hydroxyl radical production in paraquat-treated plants. Plant Physiology, 90, 1267–1270.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cui, F., Brosché, M., Shapiguzov, A., He, X. Q., Vainonen, J. P., Leppälä, J., Trotta, A., Kangasjärvi, S., Salojärvi, J., Kangasjärvi, J., & Overmyer, K. (2019). Interaction of methyl viologen-induced chloroplast and mitochondrial signalling in Arabidopsis. Free Radical Biology & Medicine, 134, 555–566.

CAS  Article  Google Scholar 

Nama, S., Madireddi, S. K., Yadav, R. M., & Subramanyam, R. (2019). Non-photochemical quenching-dependent acclimation and thylakoid organization of Chlamydomonas reinhardtii to high light stress. Photosynthesis Research, 139, 387–400.

CAS  PubMed  Article  Google Scholar 

Cao, S., Zhang, X., Xu, D., Fan, X., Mou, S., Wang, Y., Ye, N., & Wang, W. (2013). A transthylakoid proton gradient and inhibitors induce a non-photochemical fluorescence quenching in unicellular algae Nannochloropsis sp. FEBS Letters, 587, 1310–1315.

CAS  PubMed  Article  Google Scholar 

Białasek, M., Górecka, M., Mittler, R., & Karpiński, S. (2017). Evidence for the involvement of electrical, calcium and ROS signaling in the systemic regulation of non-photochemical quenching and photosynthesis. Plant and Cell Physiology, 58, 207–215.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Dong, Y. L., Jiang, T., Xia, W., Dong, H. P., Lu, S. H., & Cui, L. (2015). Light harvesting proteins regulate non-photochemical fluorescence quenching in the marine diatom Thalassiosira pseudonana. Algal Research, 12, 300–307.

Article  Google Scholar 

Miyake, C. (2010). Alternative electron flows (water-water cycle and cyclic electron flow around PSI) in photosynthesis: Molecular mechanisms and physiological functions. Plant and Cell Physiology, 51, 1951–1963.

CAS  PubMed  Article  Google Scholar 

Zavřel, T., Szabó, M., Tamburic, B., Evenhuis, C., Kuzhiumparambil, U., Literáková, P., Larkum, A. W. D., Raven, J. A., Červený, J., & Ralph, P. J. (2018). Effect of carbon limitation on photosynthetic electron transport in Nannochloropsis oculata. Journal of Photochemistry and Photobiology, B, 181, 31–43.

Article  CAS  Google Scholar 

Sétif, P. (2015). Electron-transfer kinetics in cyanobacterial cells: Methyl viologen is a poor inhibitor of linear electron flow. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1847, 212–222.

Article  CAS  Google Scholar 

Chagas, R. M., Silveira, J. A. G., Ribeiro, R. V., Vitorello, V. A., & Carrer, H. (2008). Photochemical damage and comparative performance of superoxide dismutase and ascorbate peroxidase in sugarcane leaves exposed to paraquat-induced oxidative stress. Pesticide Biochemistry and Physiology, 90, 181–188.

CAS  Article  Google Scholar 

Martin, R. E., Thomas, D. J., Tucker, D. E., & Herbert, S. K. (1997). The effects of photooxidative stress on photosystem I measured in vivo in Chlamydomonas. Plant, Cell and Environment, 20, 1451–1461.

CAS  Article  Google Scholar 

Collén, J., & Davison, I. R. (1999). Stress tolerance and reactive oxygen metabolism in the intertidal red seaweeds Mastocarpus stellatus and Chondrus crispus. Plant, Cell and Environment, 22, 1143–1151.

Article  Google Scholar 

Gutiérrez, J., González-Pérez, S., García-García, F., Daly, C. T., Lorenzo, Ó., Revuelta, J. L., McCabe, P. F., & Arellano, J. B. (2014). Programmed cell death activated by Rose Bengal in Arabidopsis thaliana cell suspension cultures requires functional chloroplasts. Journal of Experimental Botany, 65, 3081–3095.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Guo, L., Liang, S., Zhang, Z., Liu, H., Wang, S., Pan, K., Xu, J., Ren, X., Pei, S., & Yang, G. (2019). Genome assembly of Nannochloropsis oceanica provides evidence of host nucleus overthrow by the symbiont nucleus during speciation. Communications Biology, 2, 1–12.

CAS  Article  Google Scholar 

Koh, E., Carmieli, R., Mor, A., & Fluhr, R. (2016). Singlet oxygen-induced membrane disruption and serpin-protease balance in vacuolar-driven cell death. Plant Physiology, 171, 1616–1625.

PubMed  PubMed Central 

留言 (0)

沒有登入
gif