The role of DNA damage repair (DDR) system in response to immune checkpoint inhibitor (ICI) therapy

Marconcini R, Spagnolo F, Stucci LS, Ribero S, Marra E, de Rosa F, et al. Current status and perspectives in immunotherapy for metastatic melanoma. Oncotarget. 2018;9:12452–70 Impact Journals LLC. Available from: https://pubmed.ncbi.nlm.nih.gov/29552325. Accessed 11 Aug 2021.

Article  PubMed  PubMed Central  Google Scholar 

Si Y, Lin A, Ding W, Meng H, Luo P, Zhang J. CARD11 alteration as a candidate biomarker of skin cutaneous melanoma treated with immune checkpoint blockade. Am J Transl Res. 2021;13:286–300 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7847528/. Accessed 15 June 2022.

CAS  PubMed  PubMed Central  Google Scholar 

Lin W, Lin A, Li Z, Zhou C, Chen C, Chen B, et al. Potential predictive value of SCN4A mutation status for immune checkpoint inhibitors in melanoma. Biomed Pharmacother. 2020;131:110633 Available from: http://www.ncbi.nlm.nih.gov/pubmed/32892029. Accessed 14 June 2022.

CAS  Article  PubMed  Google Scholar 

Nolan E, Savas P, Policheni AN, Darcy PK, Vaillant F, Mintoff CP, et al. Combined immune checkpoint blockade as a therapeutic strategy for BRCA1-mutated breast cancer. Sci Transl Med. 2017;9 Available from: http://stm.sciencemag.org/. Accessed 9 Sept 2021.

Parker C. A near miss for prostate cancer immunotherapy. Lancet Oncol. 2014;15:669–71 Available from: https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(14)70220-7/fulltext. Accessed 7 Sept 2021.

Article  PubMed  Google Scholar 

Goetze TO. Immunotherapy: a new era in small-cell lung cancer. Lancet J. 2019;394:1884–5. Available from: https://doi.org/10.1016/S0140-6736(19)32235-4 Accessed 7 Sept 2021.

Article  Google Scholar 

Souquet P-J, Couraud S. Immune checkpoint inhibitors: a game changer for metastatic non-small-cell lung cancer. Lancet Oncol. 2019;20:1334–5 Available from: https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(19)30508-X/fulltext. Accessed 7 Sept 2021.

CAS  Article  PubMed  Google Scholar 

Lin A, Zhang H, Hu X, Chen X, Wu G, Luo P, et al. Age, sex, and specific gene mutations affect the effects of immune checkpoint inhibitors in colorectal cancer. Pharmacol Res. 2020;159:105028. https://doi.org/10.1016/j.phrs.2020.105028 Accessed 23 Aug 2021.

CAS  Article  PubMed  Google Scholar 

Sen T, Rodriguez BL, Chen L, della Corte CM, Morikawa N, Fujimoto J, et al. Targeting DNA damage response promotes anti-tumor immunity through STING-mediated T-cell activation in small cell lung cancer. Cancer Discov. 2019;9:646–61. Available from: https://doi.org/10.1158/2159-8290.CD-18-1020 American Association for Cancer Research Inc. Accessed 2 Sept 2021.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tang Z, Pilié PG, Geng C, Manyam GC, Yang G, Park S, et al. ATR inhibition induces CDK1-SPOP signaling and enhances anti-PD-L1 cytotoxicity in prostate cancer. Clin Cancer Res. 2021;27:4898–909 American Association for Cancer Research Inc. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8456453/. Accessed 11 Jan 2022.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Subudhi SK, Vence L, Zhao H, Blando J, Yadav SS, Xiong Q, et al. Neoantigen responses, immune correlates, and favorable outcomes after ipilimumab treatment of patients with prostate cancer. Sci Transl Med. 2020;12:3577 Available from: https://pubmed.ncbi.nlm.nih.gov/32238575/. Accessed 7 Sept 2021.

Article  CAS  Google Scholar 

Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54 New England Journal of Medicine (NEJM/MMS). Available from: https://www.nejm.org/doi/full/10.1056/NEJMoa1200690. Accessed 9 Aug 2021.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sharma P, Pachynski RK, Narayan V, Fléchon A, Gravis G, Galsky MD, et al. Nivolumab plus ipilimumab for metastatic castration-resistant prostate cancer: preliminary analysis of patients in the CheckMate 650 trial. Cancer Cell. 2020;38:489–499.e3 Cell Press. Available from: https://www.cell.com/cancer-cell/pdf/S1535-6108(20)30418-9.pdf. Accessed 11 Aug 2021.

CAS  Article  PubMed  Google Scholar 

Doroshow DB, Bhalla S, Beasley MB, Sholl LM, Kerr KM, Gnjatic S, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2021;18:345–62 Nature Research. Available from: https://www.nature.com/articles/s41571-021-00473-5. Accessed 11 Sept 2021.

CAS  Article  PubMed  Google Scholar 

Dudley JC, Lin MT, Le DT, Eshleman JR. Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res. 2016;22:813–20 American Association for Cancer Research Inc. Available from: https://aacrjournals.org/clincancerres/article/22/4/813/251220/Microsatellite-Instability-as-a-Biomarker-for-PD-1?searchresult=1. Accessed 19 Sept 2021.

CAS  Article  PubMed  Google Scholar 

Lamberti G, Andrini E, Sisi M, di Federico A, Ricciuti B. Targeting DNA damage response and repair genes to enhance anticancer immunotherapy: rationale and clinical implication. Future Oncol. 2020;16:1751–66 Future Medicine Ltd. Available from: https://www.futuremedicine.com/doi/full/10.2217/fon-2020-0215. Accessed 12 Sept 2021.

CAS  PubMed  Google Scholar 

Lhuillier C, Vanpouille-Box C, Galluzzi L, Formenti SC, Demaria S. Emerging biomarkers for the combination of radiotherapy and immune checkpoint blockers. Semin Cancer Biol. 2018;52:125–34 Academic Press. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004231/. Accessed 24 Aug 2021.

CAS  Article  PubMed  Google Scholar 

Klein O, Kee D, Markman B, Carlino MS, Underhill C, Palmer J, et al. Evaluation of TMB as a predictive biomarker in patients with solid cancers treated with anti-PD-1/CTLA-4 combination immunotherapy. Cancer Cell. 2021;39:592–3 Cell Press. Available from: https://www.sciencedirect.com/science/article/pii/S1535610821002130. Accessed 11 Sept 2021.

CAS  Article  PubMed  Google Scholar 

Lin A, Zhang J, Luo P. Crosstalk between the MSI status and tumor microenvironment in colorectal cancer. Front Immunol. 2020;11:2039 Available from: http://www.ncbi.nlm.nih.gov/pubmed/32903444. Accessed 14 June 2022.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Xiong A, Nie W, Zhou Y, Li C, Gu K, Zhang D, et al. Comutations in DDR pathways predict Atezolizumab response in non-small cell lung cancer patients. Front Immunol. 2021;12:708558 Available from: http://www.ncbi.nlm.nih.gov/pubmed/34630387. Accessed 12 Jan 2022.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gettinger S, Rizvi NA, Chow LQ, Borghaei H, Brahmer J, Ready N, et al. Nivolumab monotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol. 2016;34:2980–7 American Society of Clinical Oncology. Available from: https://ascopubs.org/doi/10.1200/JCO.2016.66.9929. Accessed 9 Feb 2022.

CAS  Article  PubMed  PubMed Central  Google Scholar 

de Bono JS, Goh JCH, Ojamaa K, Piulats Rodriguez JM, Drake CG, Hoimes CJ, et al. KEYNOTE-199: Pembrolizumab (pembro) for docetaxel-refractory metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2018;36(Suppl 15):5007. https://doi.org/10.1200/JCO.2018.36.15_suppl.5007 Wolters Kluwer. Accessed 15 Sept 2021.

Article  Google Scholar 

Ribas A. Releasing the brakes on cancer immunotherapy. N Engl J Med. 2015;373:1490–2 New England Journal of Medicine (NEJM/MMS). Available from: https://www.nejm.org/doi/full/10.1056/NEJMp1510079. Accessed 10 Feb 2022.

Article  PubMed  Google Scholar 

Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20 New England Journal of Medicine (NEJM/MMS). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481136/. Accessed 14 Jan 2022.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cortes-Ciriano I, Lee S, Park WY, Kim TM, Park PJ. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017;8:1–12 Nature Publishing Group. Available from: https://www.nature.com/articles/ncomms15180. Accessed 13 Jan 2022.

Article  CAS  Google Scholar 

Ettrich TJ, Seufferlein T. Systemic therapy for metastatic pancreatic cancer. Curr Treat Options in Oncol. 2021;22:106 Springer. Available from: https://link.springer.com/article/10.1007/s11864-021-00895-4. Accessed 10 Feb 2022.

Article  Google Scholar 

Marabelle A, Le DT, Ascierto PA, di Giacomo M, de Jesus-Acosta A, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/ mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2020;38:1–10 Available from: https://ascopubs.org/doi/10.1200/JCO.19.02105. Accessed 9 Mar 2022.

CAS  Article  PubMed  Google Scholar 

Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8:193–204. Available from: https://doi.org/10.1038/nrc2342 Accessed 14 Mar 2022.

CAS  Article  PubMed  Google Scholar 

Sancar A, Lindsey-Boltz LA, Ünsal-Kaçmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85. Available from: https://doi.org/10.1146/annurev.biochem.73.011303.073723 Accessed 14 Mar 2022.

CAS  Article  PubMed  Google Scholar 

Luo P, Lin A, Li K, Wei T, Zhang J. DDR pathway alteration, tumor mutation burden, and cisplatin sensitivity in small cell lung cancer: difference detected by whole exome and targeted gene sequencing. J Thorac Oncol. 2019;14:e276–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/31757380. Accessed 14 June 2022.

CAS  Article  PubMed  Google Scholar 

Knijnenburg TA, Wang L, Zimmermann MT, Chambwe N, Gao GF, Cherniack AD, et al. Genomic and molecular landscape of DNA damage repair deficiency across The Cancer Genome Atlas. Cell Rep. 2018;23:239–254.e6. Available from: https://doi.org/10.1016/j.celrep.2018.03.076 Cell Press. Accessed 30 Apr 2022.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yu EY, Wu H, Schloss C. KEYNOTE-365: phase 1b/2 trial of pembrolizumab combination therapy for metastatic castration-resistant prostate cancer (mCRPC). Eur Urol Suppl. 2017;16:e360 Available from: https://www.sciencedirect.com/science/article/pii/S1569905617302749. Accessed 9 Jan 2022.

Article  Google Scholar 

Karzai F, Vanderweele D, Madan RA, Owens H, Cordes LM, Hankin A, et al. Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J Immunother Cancer. 2018;6:141. Available from: https://doi.org/10.1186/s40425-018-0463-2 BioMed Central Ltd. Accessed 23 Aug 2021.

Article  PubMed  PubMed Central  Google Scholar 

Zhou C, Lin A, Cao M, Ding W, Mou W, Guo N, et al. Activation of the DDR pathway leads to the down-regulation of the TGFβ pathway and a better response to ICIs in patients with metastatic urothelial carcinoma. Front Immunol. 2021;12 Frontiers Media S.A. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2021.634741/full. Accessed 11 Sept 202.

Qing T, Jun T, Lindblad KE, Lujambio A, Marczyk M, Pusztai L, et al. Diverse immune response of DNA damage repair-deficient tumors. Cell Rep Med. 2021;2:100276. Available from: https://doi.org/10.1016/j.xcrm.2021.100276 Accessed 11 Sept 2021.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Parkes EE, Walker SM, Taggart LE, McCabe N, Knight LA, Wilkinson R, et al. Activation of STING-dependent innate immune signaling by s-phase-specific DNA damage in breast cancer. J Natl Cancer Inst. 2017;109 Oxford University Press. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441301/. Accessed 6 Oct 2021.

Shen T, Jia S, Ding G, Ping D, Zhou L, Zhou S, et al. BxPC-3-derived small extracellular vesicles induce FOXP3+ Treg through ATM-AMPK-Sirtuins-mediated FOXOs nuclear translocations. iScience. 2020;23:101431 Available from: http://www.ncbi.nlm.nih.gov/pubmed/32798974. Accessed 8 Dec 2021.

CAS  Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif