Lupeol and Paclitaxel cooperate in hindering hypoxia induced vasculogenic mimicry via suppression of HIF-1α-EphA2-Laminin-5γ2 network in human oral cancer

Ahn MJ, D’Cruz A, Vermorken JB, Chen JP, Chitapanarux I, Dang HQT, Guminski A, Kannarunimi D, Lin TY, Ng WT (2016) Clinical recommendations for defining platinum unsuitable head and neck cancer patient populations on chemoradiotherapy: a literature review. Oral Oncol 53:10–16. https://doi.org/10.1016/j.oraloncology.2015.11.019

Article  PubMed  Google Scholar 

Almahmoudi R, Salem A, Hadler-Olsen E, Svineng G, Salo T, Al-Samadi A (2021) The effect of interleukin-17F on vasculogenic mimicry in oral tongue squamous cell carcinoma. Cancer Sci 112:2223–2232. https://doi.org/10.1111/cas.14894

CAS  Article  PubMed  PubMed Central  Google Scholar 

Al-Rehaily AJ, El-Tahir KEH, Mossa JS, Rafatullah S (2001) Pharmacological studies of various extracts and the major constituent, Lupeol, obtained from hexane extract of Teclea nobilis in rodents. Nat Prod Sci 7:76–82

CAS  Google Scholar 

Barathan M, Zulpa AK, Mee Hoong S, Vellasamy KM, Vadivelu J (2021) Synergistic effect of hyperforin and Paclitaxel on growth inhibition, apoptotic mediator activation in MCF-7 human breast cancer cells. J Taibah Univ Sci 15:918–927. https://doi.org/10.1080/16583655.2021.2010910

Article  Google Scholar 

Bedal KB, Grässel S, Spanier G, Reichert TE, Bauer RJ (2015) The NC11 domain of human collagen XVI induces vasculogenic mimicry in oral squamous cell carcinoma cells. Carcinogenesis 36:1429–1439. https://doi.org/10.1093/carcin/bgv141

CAS  Article  PubMed  Google Scholar 

Belotti D, Pinessi D, Taraboletti G (2021) Alternative vascularization mechanisms in tumor resistance to therapy. Cancers (basel) 13:1912. https://doi.org/10.3390/cancers13081912

CAS  Article  Google Scholar 

Bhattacharyya S, Sekar V, Majumde B, Mehrotra DG, Banerjee S, Bhowmick AK, Alam N, Mandal GK, Biswas J, Majumder PK (2017) CDKN2A-p53 mediated antitumor effect of Lupeol in head and neck cancer. Cell Oncol (dordr) 40:145–155. https://doi.org/10.1007/s13402-016-0311-7

CAS  Article  Google Scholar 

Bhattacharyya S, Mitra D, Ray S, Biswas N, Banerjee S, Majumder B, Mustafi SM, Murmu N (2019) Reversing effect of Lupeol on vasculogenic mimicry in murine melanoma progression. Microvasc Res 121:52–62. https://doi.org/10.1016/j.mvr.2018.10.008

CAS  Article  PubMed  Google Scholar 

Bociort F, Macasoi IG, Marcovici I, Motoc A, Grosu C, Pinzaru I, Petean C, Avram S, Dehelean CA (2021) Investigation of lupeol as anti-melanoma agent: an in vitro-in Ovo perspective. Curr Oncol 28:5054–5066. https://doi.org/10.3390/curroncol28060425

Article  PubMed  PubMed Central  Google Scholar 

Borse V, Konwar AN, Buragohain P (2020) Oral cancer diagnosis and perspectives in India. Sens Int 1:100046. https://doi.org/10.1016/j.sintl.2020.100046

Article  PubMed  Google Scholar 

Che S, Wu S, Yu P (2022) Lupeol induces autophagy and apoptosis with reduced cancer stem-like properties in retinoblastoma via phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin inhibition. J Pharm Pharmacol 74:208–215. https://doi.org/10.1093/jpp/rgab060

Article  PubMed  Google Scholar 

Chen Q, Lin W, Yin Z, Zou Y, Liang S, Ruan S, Chen P, Li S, Shu Q, Cheng B (2019) Melittin inhibits hypoxia-induced vasculogenic mimicry formation and epithelial-mesenchymal transition through suppression of HIF-1α/Akt pathway in liver cancer. Evid Based Complement Alternat Med 2019:9602935. https://doi.org/10.1155/2019/9602935

Article  PubMed  PubMed Central  Google Scholar 

Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446. https://doi.org/10.1158/0008-5472.CAN-09-1947

CAS  Article  PubMed  Google Scholar 

Delgado-Bellido D, Serrano-Saenz S, Fernández-Cortés OFJ (2017) Vasculogenic mimicry signaling revisited: focus on non-vascular VE-cadherin. Mol Cancer 16:65. https://doi.org/10.1186/s12943-017-0631-x

CAS  Article  PubMed  PubMed Central  Google Scholar 

Duan S (2018) Silencing the autophagy-specific gene Beclin-1 contributes to attenuated hypoxia-induced vasculogenic mimicry formation in glioma. Cancer Biomark 21:565–574. https://doi.org/10.3233/CBM-170444

CAS  Article  PubMed  Google Scholar 

Emami Nejad A, Najafgholian S, Rostami A, Sistani A, Shojaeifar S, Esparvarinha M, Nedaeinia R, Haghjooy Javanmard S, Taherian M, Ahmadlou M (2021) The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int 21:62. https://doi.org/10.1186/s12935-020-01719-5

CAS  Article  PubMed  PubMed Central  Google Scholar 

Folberg R, Maniotis AJ (2004) Vasculogenic mimicry. APMIS 112(7–8):508–525. https://doi.org/10.1111/j.1600-0463.2004.apm11207-0810.x

Article  PubMed  Google Scholar 

Fu R, Du W, Ding Z, Wang Y, Li Y, Zhu J, Zeng Y, Zheng Y, Liu Z, Huang J (2021) HIF-1α promoted vasculogenic mimicry formation in lung adenocarcinoma through NRP1 upregulation in the hypoxic tumor microenvironment. Cell Death Dis 12:1–11. https://doi.org/10.1038/s41419-021-03682-z

CAS  Article  Google Scholar 

Hendrix MJ, Seftor EA, Meltzer PS, Gardner LM, Hess AR, Kirschmann DA, Schatteman GC, Seftor RE (2001) Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci U S A 98:8018–8023. https://doi.org/10.1073/pnas.131209798

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hernández de la Cruz ON, López-González JS, García-Vázquez R, Salinas-Vera YM, Muñiz-Lino MA, Aguilar-Cazares D, López-Camarillo C, Carlos-Reyes Á (2020) Regulation networks driving vasculogenic mimicry in solid tumors. Front Oncol 9:1419. https://doi.org/10.3389/fonc.2019.01419

Article  PubMed  PubMed Central  Google Scholar 

Hess AR, Seftor EA, Gruman LM, Kinch MS, Seftor REB, Hendrix MJC (2006) VE-cadherin regulates EphA2 in aggressive melanoma cells through a novel signaling pathway: implications for vasculogenic mimicry. Cancer Biol Ther 5:228–233. https://doi.org/10.4161/cbt.5.2.2510

CAS  Article  PubMed  Google Scholar 

Hong KO, Oh KY, Yoon HJ, Swarup N, Jung M, Shin JA, Kim JH, Chawla K, Lee JI, Cho SD (2021) SOX7 blocks vasculogenic mimicry in oral squamous cell carcinoma. J Oral Pathol Med 50:766–775. https://doi.org/10.1111/jop.13176

CAS  Article  PubMed  Google Scholar 

Horwitz SB (1994) Taxol (Paclitaxel): mechanisms of action. Ann Oncol 5(Suppl 6):S3-6

PubMed  Google Scholar 

Hujanen R, Almahmoudi R, Salo T, Salem A (2021) Comparative analysis of vascular mimicry in head and neck squamous cell carcinoma in vitro and in vivo approaches. Cancers 13:4747. https://doi.org/10.3390/cancers13194747

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jue C, Lin C, Zhisheng Z, Yayun Q, Feng J, Min Z, Haibo W, Youyang S, Hisamitsu T, Shintaro I (2017) Notch1 promotes vasculogenic mimicry in hepatocellular carcinoma by inducing EMT signaling. Oncotarget 8:2501–2513. https://doi.org/10.18632/oncotarget.12388

Article  PubMed  Google Scholar 

Larson AR, Lee CW, Lezcano C, Zhan Q, Huang J, Fischer AH, Murphy GF (2014) Melanoma spheroid formation involves laminin-associated vasculogenic mimicry. Am J Pathol 184:71–78. https://doi.org/10.1016/j.ajpath.2013.09.020

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lee TY, Tseng YH (2020) The potential of phytochemicals in oral cancer prevention and therapy: a review of the evidence. Biomolecules 10:E1150. https://doi.org/10.3390/biom10081150

CAS  Article  PubMed  Google Scholar 

Lee TK, Poon RTP, Wo JY, Ma S, Guan XY, Myers JN, Altevogt P, Yuen APW (2007) Lupeol suppresses cisplatin-induced nuclear factor-kappaB activation in head and neck squamous cell carcinoma and inhibits local invasion and nodal metastasis in an orthotopic nude mouse model. Cancer Res 67:8800–8809. https://doi.org/10.1158/0008-5472.CAN-07-0801

CAS  Article  PubMed  Google Scholar 

Li W, Zhou Y (2019) LRIG1 acts as a critical regulator of melanoma cell invasion, migration, and vasculogenic mimicry upon hypoxia by regulating EGFR/ERK-triggered epithelial-mesenchymal transition. Biosci Rep 39:bsr20181165

Article  Google Scholar 

Li X, Yang Z, Han Z, Wen Y, Ma Z, Wang Y (2018) Niclosamide acts as a new inhibitor of vasculogenic mimicry in oral cancer through upregulation of miR-124 and downregulation of STAT3. Oncol Rep 39:827–833. https://doi.org/10.3892/or.2017.6146

CAS  Article  PubMed  Google Scholar 

Liu K, Zhang X, Xie L, Deng M, Chen H, Song J, Long J, Li X, Luo J (2021) Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol Res 164:105373. https://doi.org/10.1016/j.phrs.2020.105373

CAS  Article  PubMed  Google Scholar 

Liu R, Wang HL, Deng MJ, Wen XJ, Mo YY, Chen FM, Zou CL, Duan WF, Li L, Nie X (2018) Melatonin inhibits reactive oxygen species-driven proliferation, epithelial-mesenchymal transition, and vasculogenic mimicry in oral cancer. Oxid Med Cell Longev 2018:3510970. https://doi.org/10.1155/2018/3510970

CAS  Article  PubMed  PubMed Central  Google Scholar 

Liu Y, Mei L, Yu Q, Xu C, Qiu Y, Yang Y, Shi K, ZhangQ GH, Zhang Z (2015) Multifunctional tandem peptide modified paclitaxel-loaded liposomes for the treatment of vasculogenic mimicry and cancer stem cells in malignant glioma. ACS Appl Mater Interfaces 7:16792–16801. https://doi.org/10.1021/acsami.5b04596

CAS  Article  PubMed  Google Scholar 

Lu XS, Sun W, Ge CY, Zhang WZ, Fan YZ (2013) Contribution of the PI3K/MMPs/Ln-5γ2 and EphA2/FAK/Paxillin signaling pathways to tumor growth and vasculogenic mimicry of gallbladder carcinomas. Int J Oncol 42:2103–2115. https://doi.org/10.3892/ijo.2013.1897

CAS  Article  PubMed  Google Scholar 

Majumder B, Baraneedharan U, Thiyagarajan S, Radhakrishnan P, Narasimhan H, Dhandapani M, Brijwani N, Pinto DD, Prasath A, Shanthappa BU (2015) Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat Commun 6:6169. https://doi.org/10.1038/ncomms7169

CAS  Article  PubMed  Google Scholar 

Malekinejad F, Kheradmand F, Khadem-Ansari MH, Malekinejad H (2022) Lupeol synergizes with doxorubicin to induce anti-proliferative and apoptotic effects on breast cancer cells. Daru. https://doi.org/10.1007/s40199-022-00436-w

Article 

留言 (0)

沒有登入
gif