1α,25-Dihydroxyvitamin D3 (VD3) Shows a Neuroprotective Action Against Rotenone Toxicity on PC12 Cells: An In Vitro Model of Parkinson’s Disease

Lotharius J, Brundin P (2002) Pathogenesis of parkinson’s disease: dopamine, vesicles and α-synuclein. Nat Rev Neurosci 3(12):932–942. https://doi.org/10.1038/nrn983

CAS  Article  PubMed  Google Scholar 

Wiatrak B, Kubis-Kubiak A, Piwowar A, Barg E (2020) PC12 cell line: cell types, coating of culture vessels, differentiation and other culture conditions. Cells. 9(4):958. https://doi.org/10.3390/CELLS9040958

CAS  Article  PubMed Central  Google Scholar 

Franco-Iborra S, Vila M, Perier C (2016) The Parkinson disease mitochondrial hypothesis: where are we at? Neuroscientist 22(3):266–277. https://doi.org/10.1177/1073858415574600

CAS  Article  PubMed  Google Scholar 

Hu Q, Wang G (2016) Mitochondrial dysfunction in Parkinson’s disease. Transl Neurodegener. https://doi.org/10.1186/s40035-016-0060-6

Article  PubMed  PubMed Central  Google Scholar 

Buratta S, Tancini B, Sagini K et al (2020) Lysosomal exocytosis, exosome release and secretory autophagy: the autophagic- and endo-lysosomal systems go extracellular. Int J Mol Sci. 21(7):2576. https://doi.org/10.3390/IJMS21072576

CAS  Article  PubMed Central  Google Scholar 

Im C-H, Ding L, Wang Y et al (2013) Computational methods in neuroengineering. Comput Math Methods Med. 2013:617347. https://doi.org/10.1155/2013/617347

Article  PubMed  PubMed Central  Google Scholar 

Sai Y, Wu Q, Le W et al (2008) Rotenone-induced PC12 cell toxicity is caused by oxidative stress resulting from altered dopamine metabolism. Toxicol Vitr 22(6):1461–1468. https://doi.org/10.1016/j.tiv.2008.04.019

CAS  Article  Google Scholar 

Lima LAR, Lopes MJP, Costa RO et al (2018) Vitamin D protects dopaminergic neurons against neuroinflammation and oxidative stress in hemiparkinsonian rats. J Neuroinflammation 15(1):249. https://doi.org/10.1186/s12974-018-1266-6

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jang W, Kim HJ, Li H et al (2014) 1,25-Dyhydroxyvitamin D3 attenuates rotenone-induced neurotoxicity in SH-SY5Y cells through induction of autophagy. Biochem Biophys Res Commun 451(1):142–147. https://doi.org/10.1016/j.bbrc.2014.07.081

CAS  Article  PubMed  Google Scholar 

Tveden-Nyborg P, Bergmann TK, Jessen N et al (2021) BCPT policy for experimental and clinical studies. Basic Clin Pharmacol Toxicol 128(1):4–8. https://doi.org/10.1111/bcpt.13492

CAS  Article  PubMed  Google Scholar 

Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2):271–277. https://doi.org/10.1016/0022-1759(86)90368-6

CAS  Article  PubMed  Google Scholar 

Langan TJ, Chou RC (2011) Synchronization of mammalian cell cultures by serum deprivation. Methods Mol Biol 761:75–83. https://doi.org/10.1007/978-1-61779-182-6_5 (PMID: 21755442)

CAS  Article  PubMed  Google Scholar 

Langan TJ, Rodgers KR, Chou RC (2017) Synchronization of mammalian cell cultures by serum deprivation. Methods Mol Biol 1524:97–105. https://doi.org/10.1007/978-1-4939-6603-5_6 (PMID: 27815898)

CAS  Article  PubMed  Google Scholar 

Mosmann TR (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. https://doi.org/10.1016/0022-1759(83)90303-4

CAS  Article  PubMed  Google Scholar 

Zimmermann M, Meyer N (2011) Annexin V/7-AAD staining in keratinocytes. Methods Mol Biol 740:757–763. https://doi.org/10.1007/978-1-61779-108-6_8

CAS  Article  Google Scholar 

Rocha DD, Balgi A, Maia AI et al (2012) Cell cycle arrest through inhibition of tubulin polymerization by withaphysalin F, a bioactive compound isolated from Acnistus arborescens. Invest New Drugs 30(3):959–966. https://doi.org/10.1007/s10637-011-9649-x

CAS  Article  PubMed  Google Scholar 

Aranda A, Sequedo L, Tolosa L et al (2013) Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: a quantitative method for oxidative stress assessment of nanoparticle-treated cells. Toxicol In Vitro 27(2):954–963. https://doi.org/10.1016/j.tiv.2013.01.016

CAS  Article  PubMed  Google Scholar 

Gorman AM, Samali A, McGowan AJ et al (1997) Use of flow cytometry techniques in studying mechanisms of apoptosis in leukemic cells. Cytometry. 29(2):97–105

CAS  Article  Google Scholar 

Qiao L, Wong BCY (2009) Targeting apoptosis as an approach for gastrointestinal cancer therapy. Drug Resist Updat 12(3):55–64. https://doi.org/10.1016/J.DRUP.2009.02.002

CAS  Article  PubMed  Google Scholar 

Pokorný J, Pokorný J, Kobilková J et al (2014) Targeting mitochondria for cancer treatment—two types of mitochondrial dysfunction. Prague Med Rep 115(3–4):104–119. https://doi.org/10.14712/23362936.2014.41

Article  PubMed  Google Scholar 

Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474. https://doi.org/10.1111/J.1432-1033.1974.TB03714.X

CAS  Article  PubMed  Google Scholar 

Lowry OH, Rosebrough NJ, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

CAS  Article  Google Scholar 

Marcotte D, Zeng W, Hus JC et al (2013) Small molecules inhibit the interaction of Nrf2 and the Keap1 Kelch domain through a non-covalent mechanism. Bioorg Med Chem 21(14):4011–4019. https://doi.org/10.1016/J.BMC.2013.04.019

CAS  Article  PubMed  Google Scholar 

Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fuhrmann J, Rurainski A, Lenhof HP et al (2009) A new Lamarckian genetic algorithm for flexible ligand-receptor docking. J Comput Chem 2012(32):174–182. https://doi.org/10.1002/jcc

Article  Google Scholar 

Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

CAS  Article  PubMed  Google Scholar 

Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/JCC.21256

CAS  Article  PubMed  PubMed Central  Google Scholar 

Li B, Nasser MI, Masood M et al (2020) Efficiency of traditional Chinese medicine targeting the Nrf2/HO-1 signaling pathway. Biomed Pharmacother 126:110074. https://doi.org/10.1016/j.biopha.2020.110074 (Epub 2020 Mar 9 PMID: 32163746)

CAS  Article  PubMed  Google Scholar 

Kaur K, Gill JS, Bansal PK, Deshmukh R (2017) Neuroinflammation—a major cause for striatal dopaminergic degeneration in Parkinson’s disease. J Neurol Sci 381:308–314. https://doi.org/10.1016/J.JNS.2017.08.3251

CAS  Article  PubMed  Google Scholar 

Puspita L, Chung SY, Shim JW (2017) Oxidative stress and cellular pathologies in Parkinson’s disease. Mol Brain. 10(1):53. https://doi.org/10.1186/s13041-017-0340-9

CAS  Article  PubMed  PubMed Central  Google Scholar 

Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol 7(1):97–109. https://doi.org/10.1016/S1474-4422(07)70327-7

CAS  Article  PubMed  Google Scholar 

Radad K, Al-Shraim M, Al-Emam A et al (2019) Rotenone: from modelling to implication in Parkinson’s disease. Folia Neuropathol 57(4):317–326. https://doi.org/10.5114/FN.2019.89857

Article  PubMed  Google Scholar 

Gao B, Chang C, Zhou J et al (2015) Pycnogenol protects against rotenone-induced neurotoxicity in PC12 cells through regulating NF-κB-iNOS signaling pathway. DNA Cell Biol 34(10):643–649. https://doi.org/10.1089/dna.2015.2953

CAS  Article  PubMed  Google Scholar 

Liu YM, Jiang B, Bao YM, An LJ (2008) Protocatechuic acid inhibits apoptosis by mitochondrial dysfunction in rotenone-induced PC12 cells. Toxicol In Vitro 22(2):430–437. https://doi.org/10.1016/j.tiv.2007.10.012

CAS  Article  PubMed  Google Scholar 

Wiseman H (1993) Vitamin D is a membrane antioxidant: ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett. 326(1–3):285–8. https://doi.org/10.1016/0014-5793(93)81809-e

CAS  Article  PubMed  Google Scholar 

Ke CY, Yang FL, Wu WT et al (2016) Vitamin D3 reduces tissue damage and oxidative stress caused by exhaustive exercise. Int J Med Sci 13(2):147–153. https://doi.org/10.7150/ijms.13=[746

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sian J, Dexter DT, Lees AJ et al (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36(3):348–355. https://doi.org/10.1002/ana.410360305

CAS  Article  PubMed  Google Sc

留言 (0)

沒有登入
gif