Addressing artifacts of colorimetric anticancer assays for plant-based drug development

Ediriweera MK, Tennekoon KH, Samarakoon SR. In vitro assays and techniques utilized in anticancer drug discovery. Appl Toxicol. 2019;39(1):38–71.

CAS  Article  Google Scholar 

Rayan A, Raiyn J, Falah M. Nature is the best source of anticancer drugs: indexing natural products for their anticancer bioactivity. J PLoS one. 2017;12(11):187925.

Article  CAS  Google Scholar 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 2021;71(3):209–49.

PubMed  Google Scholar 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. J CA. 2015;65(2):87–108.

PubMed  Google Scholar 

Dube PN, Sakle NS, Dhawale SA, More SA, Mokale SN. Synthesis, biological investigation and docking study of novel chromen derivatives as anti-cancer agents. Anti-Cancer Agents Med Chem. 2019;19(9):1150–60.

CAS  Article  Google Scholar 

Xia C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. J Chin Med J. 2022;135(05):584–90.

PubMed  Article  Google Scholar 

Bray F. Transitions in human development and the global cancer burden. World Cancer Report. 2014;34.

Adeloye D, David RA, Aderemi AV, Iseolorunkanmi A, Oyedokun A, Iweala EE, et al. An estimate of the incidence of prostate cancer in Africa: a systematic review and meta-analysis. PLoS ONE. 2016;11(4):e0153496.

PubMed  PubMed Central  Article  CAS  Google Scholar 

World health Organization. World health organization cancer fact sheet. Geneva: WHO; 2009.

Google Scholar 

Jantan I, Bukhari SNA, Mohamed MAS, Wai LK, Mesaik MA. The evolving role of natural products from the tropical rainforests as a replenishable source of new drug leads. In: Drug discovery development-from molecules to medicine. London: Intech Open; 2015. p. 3–38.

Google Scholar 

Chen CY-C. TCM database@Taiwan: the world’s largest traditional Chinese medicine database for drug screening in silico. PLoS ONE. 2011;6(1):e15939.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Shoemaker RH. The NCI 60 human tumor cell line screen: An information-rich screen informing on mechanisms of toxicity. Vitro Cell Dev Biol. 2006;42:5A-5A.

Article  Google Scholar 

Li G-H, Huang J-F. CDRUG: a web server for predicting anticancer activity of chemical compounds. Bioinformatics. 2012;28(24):3334–5.

CAS  PubMed  Article  Google Scholar 

Dai S-X, Li W-X, Han F-F, Guo Y-C, Zheng J-J, Liu J-Q, et al. Corrigendum: in silico identification of anti-cancer compounds and plants from traditional Chinese medicine database. Sci Rep. 2016. https://doi.org/10.1038/srep34972.

Article  PubMed  PubMed Central  Google Scholar 

Alves-Silva JM, Romane A, Efferth T, Salgueiro L. North African medicinal plants traditionally used in cancer therapy. Front Pharmacol. 2017;8:383.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Tariq A, Sadia S, Pan K, Ullah I, Mussarat S, Sun F, et al. A systematic review on ethnomedicines of anti-cancer plants. Phytother Res. 2017;31(2):202–64.

PubMed  Article  Google Scholar 

Guo Z. The modification of natural products for medical use. Acta Pharm Sin B. 2017;7(2):119–36.

PubMed  Article  Google Scholar 

Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, et al. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci. 2018;19(6):1578.

PubMed Central  Article  CAS  Google Scholar 

Laus G, Keplinger K. Alkaloids of peruvian Uncaria guianensis (Rubiaceae). Phyton. 2003;43(1):1–8.

CAS  Google Scholar 

Batiha GE-S, Magdy Beshbishy A, Wasef L, Elewa YH, El-Hack A, Mohamed E, et al. Uncaria tomentosa (Willd. ex Schult.) DC.: a review on chemical constituents and biological activities. Appl Sci. 2020;10(8):2668.

Article  CAS  Google Scholar 

Taylor P, Colman L, Bajoon J. The search for plants with anticancer activity: pitfalls at the early stages. J Ethnopharmacol. 2014;158:246–54.

PubMed  Article  Google Scholar 

Kumar N, Afjei R, Massoud TF, Paulmurugan R. Comparison of cell-based assays to quantify treatment effects of anticancer drugs identifies a new application for Bodipy-L-cystine to measure apoptosis. Sci Rep. 2018;8(1):1–11.

Google Scholar 

Aslantürk ÖS. In vitro cytotoxicity and cell viability assays: principles, advantages, and disadvantages. London: Intech Open; 2018.

Google Scholar 

Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. J Pharmacol. 2011;162(6):1239–49.

CAS  Google Scholar 

Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discovery. 2010;9(3):203–14.

CAS  PubMed  Article  Google Scholar 

Willmann JK, Van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat Rev Drug Discovery. 2008;7(7):591–607.

CAS  PubMed  Article  Google Scholar 

Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K. A combined assay of cell vability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull. 1996;19(11):1518–20.

CAS  PubMed  Article  Google Scholar 

Rubinstein L, Shoemaker R, Paull K, Simon R, Tosini S, Skehan P, et al. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J Natl Cancer Inst. 1990;82(13):1113–7.

CAS  PubMed  Article  Google Scholar 

Wang P, Henning SM, Heber D. Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS ONE. 2010;5(4):e10202.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Greenwell M, Rahman P. Medicinal plants: their use in anticancer treatment. Int J Pharm Sci Res. 2015;6(10):4103.

CAS  PubMed  PubMed Central  Google Scholar 

Seca AM, Pinto DC. Plant secondary metabolites as anticancer agents: successes in clinical trials and therapeutic application. Int J Mol Sci. 2018;19(1):263.

PubMed Central  Article  CAS  Google Scholar 

Moudi M, Go R, Yien CYS, Nazre M. Vinca alkaloids. Int J Prev Med. 2013;4(11):1231.

PubMed  PubMed Central  Google Scholar 

Chagas CM, Alisaraie L. Metabolites of vinca alkaloid vinblastine: tubulin binding and activation of nausea-associated receptors. ACS Omega. 2019;4(6):9784–99.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Walker BK, Raich PC, Fontana J, Subramanian V, Rogers JS, Knost J, et al. Phase II study of vindesine in patients with advanced breast cancer. J Cancer Treat Rep. 1982;66(9):1729–32.

CAS  Google Scholar 

Ichikawa M, Suzuki D, Inamoto J, Ohshima J, Cho Y, Saitoh S, et al. Successful alternative treatment containing vindesine for acute lymphoblastic leukemia with charcot-marie-tooth disease. J Pediatr Hematol Oncol. 2012;34(3):239–41.

CAS  PubMed  Article  Google Scholar 

Brousell SC, Fantony JJ, Van Noord MG, Harrison MR, Inman BA. Vinflunine for the treatment of advanced or metastatic transitional cell carcinoma of the urothelial tract: an evidence-based review of safety, efficacy, and place in therapy. Core Evid. 2018;13:1.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gerullis H, Wawroschek F, Köhne C-H, Ecke TH. Vinflunine in the treatment of advanced urothelial cancer: clinical evidence and experience. Ther Adv Urol. 2017;9(1):28–35.

CAS  PubMed  Article  Google Scholar 

Aapro M, Finek J. Oral vinorelbine in metastatic breast cancer: a review of current clinical trial results. Cancer Treat Rev. 2012;38(2):120–6.

CAS  PubMed  Article  Google Scholar 

Xu YC, Wang HX, Tang L, Ma Y, Zhang FC. A systematic review of vinorelbine for the treatment of breast cancer. Breast J. 2013;19(2):180–8.

CAS  PubMed  Article  Google Scholar 

Cragg GM, Kingston DG, Newman DJ. Anticancer agents from natural products. Boca Raton: CRC Press; 2011.

Book  Google Scholar 

Ardalani H, Avan A, Ghayour-Mobarhan M. Podophyllotoxin: a novel potential natural anticancer agent. J Phytomed. 2017;7(4):285.

CAS  Google Scholar 

Carqueijeiro I, Langley C, Grzech D, Koudounas K, Papon N, O’Connor SE, et al. Beyond the semi-synthetic artemisinin: metabolic engineering of plant-derived anti-cancer drugs. Curr Opin Biotechnol. 2020;65:17–24.

CAS  PubMed  Article  Google Scholar 

Diwaker A, Jadon G. Plant-Based anticancer molecules: a chemical and biological profile of some important leads. J Adv Res Pharm Bio Sci. 2012;1(2):16–25.

Google Scholar 

Liu W, Li S, Qu Z, Luo Y, Chen R, Wei S, et al. Betulinic acid induces autophagy-mediated apoptosis through suppression of the PI3K/AKT/mTOR signaling pathway and inhibits hepatocellular carcinoma. J Transl Res. 2019;11(11):6952.

CAS  Google Scholar 

Cicenas J, Kalyan K, Sorokinas A, Stankunas E, Levy J, Meskinyte I, et al. Roscovitine in cancer and other diseases. Ann Transl Med. 2015. https://doi.org/10.3978/j.issn.2305-5839.2015.03.61.

Article  PubMed 

留言 (0)

沒有登入
gif